CoaT: Co-Scale Conv-Attentional Image Transformers

Related tags

Deep LearningCoaT
Overview

CoaT: Co-Scale Conv-Attentional Image Transformers

Introduction

This repository contains the official code and pretrained models for CoaT: Co-Scale Conv-Attentional Image Transformers. It introduces (1) a co-scale mechanism to realize fine-to-coarse, coarse-to-fine and cross-scale attention modeling and (2) an efficient conv-attention module to realize relative position encoding in the factorized attention.

Model Accuracy

For more details, please refer to CoaT: Co-Scale Conv-Attentional Image Transformers by Weijian Xu*, Yifan Xu*, Tyler Chang, and Zhuowen Tu.

Changelog

04/23/2021: Pre-trained checkpoint for CoaT-Lite Mini is released.
04/22/2021: Code and pre-trained checkpoint for CoaT-Lite Tiny are released.

Usage

Environment Preparation

  1. Set up a new conda environment and activate it.

    # Create an environment with Python 3.8.
    conda create -n coat python==3.8
    conda activate coat
  2. Install required packages.

    # Install PyTorch 1.7.1 w/ CUDA 11.0.
    pip install torch==1.7.1+cu110 torchvision==0.8.2+cu110 torchaudio==0.7.2 -f https://download.pytorch.org/whl/torch_stable.html
    
    # Install timm 0.3.2.
    pip install timm==0.3.2
    
    # Install einops.
    pip install einops

Code and Dataset Preparation

  1. Clone the repo.

    git clone https://github.com/mlpc-ucsd/CoaT
    cd CoaT
  2. Download ImageNet dataset (ILSVRC 2012) and extract.

    # Create dataset folder.
    mkdir -p ./data/ImageNet
    
    # Download the dataset (not shown here) and copy the files (assume the download path is in $DATASET_PATH).
    cp $DATASET_PATH/ILSVRC2012_img_train.tar $DATASET_PATH/ILSVRC2012_img_val.tar $DATASET_PATH/ILSVRC2012_devkit_t12.tar.gz ./data/ImageNet
    
    # Extract the dataset.
    python -c "from torchvision.datasets import ImageNet; ImageNet('./data/ImageNet', split='train')"
    python -c "from torchvision.datasets import ImageNet; ImageNet('./data/ImageNet', split='val')"
    # After the extraction, you should observe `train` and `val` folders under ./data/ImageNet.

Evaluate Pre-trained Checkpoint

We provide the CoaT checkpoints pre-trained on the ImageNet dataset.

Name [email protected] [email protected] #Params SHA-256 (first 8 chars) URL
CoaT-Lite Tiny 77.5 93.8 5.7M e88e96b0 model, log
CoaT-Lite Mini 79.1 94.5 11M 6b4a8ae5 model, log

The following commands provide an example (CoaT-Lite Tiny) to evaluate the pre-trained checkpoint.

# Download the pretrained checkpoint.
mkdir -p ./output/pretrained
wget http://vcl.ucsd.edu/coat/pretrained/coat_lite_tiny_e88e96b0.pth -P ./output/pretrained
sha256sum ./output/pretrained/coat_lite_tiny_e88e96b0.pth  # Make sure it matches the SHA-256 hash (first 8 characters) in the table.

# Evaluate.
# Usage: bash ./scripts/eval.sh [model name] [output folder] [checkpoint path]
bash ./scripts/eval.sh coat_lite_tiny coat_lite_tiny_pretrained ./output/pretrained/coat_lite_tiny_e88e96b0.pth
# It should output results similar to "[email protected] 77.504 [email protected] 93.814" at very last.

Train

The following commands provide an example (CoaT-Lite Tiny, 8-GPU) to train the CoaT model.

# Usage: bash ./scripts/train.sh [model name] [output folder]
bash ./scripts/train.sh coat_lite_tiny coat_lite_tiny

Evaluate

The following commands provide an example (CoaT-Lite Tiny) to evaluate the checkpoint after training.

# Usage: bash ./scripts/eval.sh [model name] [output folder] [checkpoint path]
bash ./scripts/eval.sh coat_lite_tiny coat_lite_tiny_eval ./output/coat_lite_tiny/checkpoints/checkpoint0299.pth

Citation

@misc{xu2021coscale,
      title={Co-Scale Conv-Attentional Image Transformers}, 
      author={Weijian Xu and Yifan Xu and Tyler Chang and Zhuowen Tu},
      year={2021},
      eprint={2104.06399},
      archivePrefix={arXiv},
      primaryClass={cs.CV}
}

License

This repository is released under the Apache License 2.0. License can be found in LICENSE file.

Acknowledgment

Thanks to DeiT and pytorch-image-models for a clear and data-efficient implementation of ViT. Thanks to lucidrains' implementation of Lambda Networks and CPVT.

Owner
mlpc-ucsd
mlpc-ucsd
Management Dashboard for Torchserve

Torchserve Dashboard Torchserve Dashboard using Streamlit Related blog post Usage Additional Requirement: torchserve (recommended:v0.5.2) Simply run:

Ceyda Cinarel 103 Dec 10, 2022
Online Multi-Granularity Distillation for GAN Compression (ICCV2021)

Online Multi-Granularity Distillation for GAN Compression (ICCV2021) This repository contains the pytorch codes and trained models described in the IC

Bytedance Inc. 299 Dec 16, 2022
PyTorch-Multi-Style-Transfer - Neural Style and MSG-Net

PyTorch-Style-Transfer This repo provides PyTorch Implementation of MSG-Net (ours) and Neural Style (Gatys et al. CVPR 2016), which has been included

Hang Zhang 906 Jan 04, 2023
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 Jittor code will come soon

MenghaoGuo 357 Dec 11, 2022
SegNet-like Autoencoders in TensorFlow

SegNet SegNet is a TensorFlow implementation of the segmentation network proposed by Kendall et al., with cool features like strided deconvolution, a

Andrea Azzini 66 Nov 05, 2021
Compressed Video Action Recognition

Compressed Video Action Recognition Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R. Manmatha, Alexander J. Smola, Philipp Krähenbühl. In CVPR, 2018. [Proj

Chao-Yuan Wu 479 Dec 26, 2022
UniFormer - official implementation of UniFormer

UniFormer This repo is the official implementation of "Uniformer: Unified Transf

SenseTime X-Lab 573 Jan 04, 2023
Dilated RNNs in pytorch

PyTorch Dilated Recurrent Neural Networks PyTorch implementation of Dilated Recurrent Neural Networks (DilatedRNN). Getting Started Installation: $ pi

Zalando Research 200 Nov 17, 2022
Application of K-means algorithm on a music dataset after a dimensionality reduction with PCA

PCA for dimensionality reduction combined with Kmeans Goal The Goal of this notebook is to apply a dimensionality reduction on a big dataset in order

Arturo Ghinassi 0 Sep 17, 2022
(Python, R, C/C++) Isolation Forest and variations such as SCiForest and EIF, with some additions (outlier detection + similarity + NA imputation)

IsoTree Fast and multi-threaded implementation of Extended Isolation Forest, Fair-Cut Forest, SCiForest (a.k.a. Split-Criterion iForest), and regular

141 Dec 29, 2022
Evaluating saliency methods on artificial data with different background types

Evaluating saliency methods on artificial data with different background types This repository contains the relevant code for the MedNeurips 2021 subm

2 Jul 05, 2022
Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E. Evaluated on benchmark dataset Office31.

Deep-Unsupervised-Domain-Adaptation Pytorch implementation of four neural network based domain adaptation techniques: DeepCORAL, DDC, CDAN and CDAN+E.

Alan Grijalva 49 Dec 20, 2022
Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore

[AI6122] Computer Vision is an elective course of MSAI, SCSE, NTU, Singapore. The repository corresponds to the AI6122 of Semester 1, AY2021-2022, starting from 08/2021. The instructor of this course

HT. Li 5 Sep 12, 2022
🌊 Online machine learning in Python

In a nutshell River is a Python library for online machine learning. It is the result of a merger between creme and scikit-multiflow. River's ambition

OnlineML 4k Jan 02, 2023
Cereal box identification in store shelves using computer vision and a single train image per model.

Product Recognition on Store Shelves Description You can read the task description here. Report You can read and download our report here. Step A - Mu

Nicholas Baraghini 1 Jan 21, 2022
Publication describing 3 ML examples at NSLS-II and interfacing into Bluesky

Machine learning enabling high-throughput and remote operations at large-scale user facilities. Overview This repository contains the source code and

BNL 4 Sep 24, 2022
Using knowledge-informed machine learning on the PRONOSTIA (FEMTO) and IMS bearing data sets. Predict remaining-useful-life (RUL).

Knowledge Informed Machine Learning using a Weibull-based Loss Function Exploring the concept of knowledge-informed machine learning with the use of a

Tim 43 Dec 14, 2022
Cooperative Driving Dataset: a dataset for multi-agent driving scenarios

Cooperative Driving Dataset (CODD) The Cooperative Driving dataset is a synthetic dataset generated using CARLA that contains lidar data from multiple

Eduardo Henrique Arnold 124 Dec 28, 2022
Repository of the paper Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models at ML4AD @ NeurIPS 2021.

Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models Code and supplementary materials Repository of the p

Daniel Bogdoll 4 Jul 13, 2022
Code for HodgeNet: Learning Spectral Geometry on Triangle Meshes, in SIGGRAPH 2021.

HodgeNet | Webpage | Paper | Video HodgeNet: Learning Spectral Geometry on Triangle Meshes Dmitriy Smirnov, Justin Solomon SIGGRAPH 2021 Set-up To ins

Dima Smirnov 61 Nov 27, 2022