Management Dashboard for Torchserve

Overview

Torchserve Dashboard

Total Downloads

Torchserve Dashboard using Streamlit

Related blog post

Demo

Usage

Additional Requirement: torchserve (recommended:v0.5.2)

Simply run:

pip3 install torchserve-dashboard --user
# torchserve-dashboard [streamlit_options(optional)] -- [config_path(optional)] [model_store(optional)] [log_location(optional)] [metrics_location(optional)]
torchserve-dashboard
#OR change port 
torchserve-dashboard --server.port 8105 -- --config_path ./torchserve.properties
#OR provide a custom configuration 
torchserve-dashboard -- --config_path ./torchserve.properties --model_store ./model_store

Keep in mind that If you change any of the --config_path,--model_store,--metrics_location,--log_location options while there is a torchserver already running before starting torch-dashboard they won't come into effect until you stop&start torchserve. These options are used instead of their respective environment variables TS_CONFIG_FILE, METRICS_LOCATION, LOG_LOCATION.

OR

git clone https://github.com/cceyda/torchserve-dashboard.git
streamlit run torchserve_dashboard/dash.py 
#OR
streamlit run torchserve_dashboard/dash.py --server.port 8105 -- --config_path ./torchserve.properties 

Example torchserve config:

inference_address=http://127.0.0.1:8443
management_address=http://127.0.0.1:8444
metrics_address=http://127.0.0.1:8445
grpc_inference_port=7070
grpc_management_port=7071
number_of_gpu=0
batch_size=1
model_store=./model_store

If the server doesn't start for some reason check if your ports are already in use!

Updates

[15-oct-2020] add scale workers tab

[16-feb-2021] (functionality) make logpath configurable,(functionality)remove model_name requirement,(UI)add cosmetic error messages

[10-may-2021] update config & make it optional. update streamlit. Auto create folders

[31-may-2021] Update to v0.4 (Add workflow API) Refactor out streamlit from api.py.

[30-nov-2021] Update to v0.5, adding support for encrypted model serving (not tested). Update streamlit to v1+

FAQs

  • Does torchserver keep running in the background?

    The torchserver is spawned using Popen and keeps running in the background even if you stop the dashboard.

  • What about environment variables?

    These environment variables are passed to the torchserve command:

    ENVIRON_WHITELIST=["LD_LIBRARY_PATH","LC_CTYPE","LC_ALL","PATH","JAVA_HOME","PYTHONPATH","TS_CONFIG_FILE","LOG_LOCATION","METRICS_LOCATION","AWS_ACCESS_KEY_ID", "AWS_SECRET_ACCESS_KEY", "AWS_DEFAULT_REGION"]

  • How to change the logging format of torchserve?

    You can set the location of your custom log4j2 config in your configuration file as in here

    vmargs=-Dlog4j.configurationFile=file:///path/to/custom/log4j2.xml

  • What is the meaning behind the weird versioning?

    The minor follows the compatible torchserve version, patch version reflects the dashboard versioning

Help & Question & Feedback

Open an issue

TODOs

  • Async?
  • Better logging
  • Remote only mode
Comments
  • Update to serve 0.4

    Update to serve 0.4

    I love your project and was hoping we can feature it more prominently in the main torchserve repo - I was wondering if you'd be OK and interested in this. And if so I was wondering if you could give me some feedback on the below

    Installation instructions

    I tried to torchserve-dashboard --server.port 8105 -- --config_path ./torchserve.properties --model_store ./model_store but the page never seems to load regardless of whether I use the network or external url that I have

    I setup a config

    (torchservedashboard) [email protected]:~/torchserve-dashboard$ cat torchserve.properties 
    inference_address=http://127.0.0.1:8443
    management_address=http://127.0.0.1:8444
    metrics_address=http://127.0.0.1:8445
    grpc_inference_port=7070
    grpc_management_port=7071
    number_of_gpu=0
    batch_size=1
    model_store=model_store
    

    But perhaps makes the most sense to just add a default one to the repo so things just work. I'm happy to make the PR just let me know what you suggest. Ideally things just work with zero config and people can come back and change stuff once they feel more comfortable.

    Also on Ubuntu I had to type export PATH="$HOME/.local/bin:$PATH" so I could call torchserve-dashboard

    Features

    Also there's some new features we're excited like the below which would be very interesting to see like

    1. Model interpretability with Captum https://github.com/pytorch/serve/blob/master/captum/Captum_visualization_for_bert.ipynb
    2. Workflow support coming in 0.4 which will allow much more configurable pipelines https://github.com/pytorch/serve/pull/1024/files

    In all cases please let me know if you think we're on the right track and how we can make the torchserve more useful to you. I liked your suggestion on automatic doc generation and it's something I'm looking into so please keep them coming!

    opened by msaroufim 5
  • Improvements of package setup logic

    Improvements of package setup logic

    This PR is related to #1 . It improves the structure of the package setup: All package related info is moved to torchserve_dashboard.init.py.

    Requirement files are added which are split up depending on the usage of the repo/package.

    All functions linked to setup are moved to torchserve_dashboard.setup_tools.py. The function parsing the requirements can handle commented requirements as well as references to github etc (#egg included in requirement)

    opened by FlorianMF 3
  • click >=8 possibly not compatible

    click >=8 possibly not compatible

    Couldn't run the dashboard initially

    Traceback (most recent call last):
      File "/Users/me/Desktop/pytorch-mnist/venv/bin/torchserve-dashboard", line 8, in <module>
        sys.exit(main())
      File "/Users/me/Desktop/pytorch-mnist/venv/lib/python3.8/site-packages/click/core.py", line 1137, in __call__
        return self.main(*args, **kwargs)
      File "/Users/me/Desktop/pytorch-mnist/venv/lib/python3.8/site-packages/click/core.py", line 1062, in main
        rv = self.invoke(ctx)
      File "/Users/me/Desktop/pytorch-mnist/venv/lib/python3.8/site-packages/click/core.py", line 1404, in invoke
        return ctx.invoke(self.callback, **ctx.params)
      File "/Users/me/Desktop/pytorch-mnist/venv/lib/python3.8/site-packages/click/core.py", line 763, in invoke
        return __callback(*args, **kwargs)
      File "/Users/me/Desktop/pytorch-mnist/venv/lib/python3.8/site-packages/click/decorators.py", line 26, in new_func
        return f(get_current_context(), *args, **kwargs)
      File "/Users/me/Desktop/pytorch-mnist/venv/lib/python3.8/site-packages/torchserve_dashboard/cli.py", line 16, in main
        ctx.forward(streamlit.cli.main_run, target=filename, args=args, *kwargs)
      File "/Users/me/Desktop/pytorch-mnist/venv/lib/python3.8/site-packages/click/core.py", line 784, in forward
        return __self.invoke(__cmd, *args, **kwargs)
      File "/Users/me/Desktop/pytorch-mnist/venv/lib/python3.8/site-packages/click/core.py", line 763, in invoke
        return __callback(*args, **kwargs)
    TypeError: main_run() got multiple values for argument 'target'
    

    After a bit of googling, I found this: https://github.com/rytilahti/python-eq3bt/issues/30

    The default install brought in click==8.0.1. I had to downgrade to 7.1.2 to get past the error.

    opened by jsphweid 1
  • better caching, init option, v0.6 update

    better caching, init option, v0.6 update

    • Better caching using @st.experimental_singleton

      • argument parsing and API class initialization should only happen once (across sessions) on initial load.
      • Should be way better compared to before which ran those functions after each page refresh 😱 Might be optimized further later...need to refactor cli-param parsing/init logic.
    • Added --init option to initialize torchserve on start. as per this issue: https://github.com/cceyda/torchserve-dashboard/issues/16 Use like: torchserve-dashboard --init Although you still have to load the dashboard screen once for it to actually start!

    • Update to match changes in torchserve v0.6

      • there seems to be only one update to ManagementAPI in v0.6 https://github.com/pytorch/serve/pull/1421 which adds ?customized=true option to return custom_metadata in model details. Although the feature seems to be buggy for old .mar files not implementing it. (tested on: https://github.com/pytorch/serve/blob/master/frontend/archive/src/test/resources/models/noop-customized.mar)

      Anyway I added a checkbox (defaulted to False) to return custom_metadata if needed.

    opened by cceyda 0
  • update streamlit version to v1.11.1

    update streamlit version to v1.11.1

    update streamlit version to include security update v1.11.1 Although torchserve-dashboard isn't using any custom components and therefore not effected by it.

    opened by cceyda 0
  • Update to 0.5.0

    Update to 0.5.0

    update torchserve:

    • v0.5
    • add aws encrypted model feature
    • add log-config to options

    update steamlit:

    • v1.2.0 -> drop beta_ prefix
    • drop python 3.6

    https://github.com/cceyda/torchserve-dashboard/issues/13

    opened by cceyda 0
  • Update to v0.4

    Update to v0.4

    • Add workflow management endpoints (untested)
    • Add version check
    • Refactor api.py (remove streamlit)

    Closes: https://github.com/cceyda/torchserve-dashboard/issues/2

    opened by cceyda 0
  • Add workflow Management API

    Add workflow Management API

    Self-todo ETA: june 3rd https://github.com/pytorch/serve/tree/release_0.4.0/examples/Workflows https://github.com/pytorch/serve/blob/release_0.4.0/docs/workflow_management_api.md

    opened by cceyda 0
  • Can't start torchserve-dashboard

    Can't start torchserve-dashboard

    I'm getting this error while on the start

    Traceback (most recent call last):
      File "/home/kavan/.local/bin/torchserve-dashboard", line 5, in <module>
        from torchserve_dashboard.cli import main
      File "/home/kavan/.local/lib/python3.8/site-packages/torchserve_dashboard/cli.py", line 2, in <module>
        import streamlit.cli
      File "/home/kavan/.local/lib/python3.8/site-packages/streamlit/__init__.py", line 49, in <module>
        from streamlit.proto.RootContainer_pb2 import RootContainer
      File "/home/kavan/.local/lib/python3.8/site-packages/streamlit/proto/RootContainer_pb2.py", line 22, in <module>
        create_key=_descriptor._internal_create_key,
    AttributeError: module 'google.protobuf.descriptor' has no attribute '_internal_create_key'
    

    Btw thanks for this awesome lib.

    opened by Kavan72 1
  • Explanations API

    Explanations API

    Mentioned in https://github.com/cceyda/torchserve-dashboard/issues/1 Model interpretability with Captum https://github.com/pytorch/serve/blob/master/captum/Captum_visualization_for_bert.ipynb

    This would be good to add if we end up adding an InferenceAPI

    opened by cceyda 0
  • Inference API

    Inference API

    Moving the discussion from https://github.com/cceyda/torchserve-dashboard/issues/1#issuecomment-863911194 to here

    Current challenges blocking this:

    • there is no way to know the format of the expected request/response. Especially for custom handlers.

    (I prefer not do model_name->type matching manually)

    If a request/response schema is added to the returned OpenAPI definitions, I can probably auto generate something like SwaggerUI.

    opened by cceyda 0
  • Docker container

    Docker container

    I think it would be great for users and for developers to be able to easily share their dashboard or run it in production without deploying via Streamlit. I could add a simple Dockerfile wrapping everything up into a container.

    Torchserve-Dashbord would be to Torchserve what MongoExpress is to MongoDB. Thoughts?

    opened by FlorianMF 3
Releases(v0.6.0)
  • v0.6.0(Aug 1, 2022)

    What's Changed

    • update streamlit version to v1.11.1 by @cceyda in https://github.com/cceyda/torchserve-dashboard/pull/18
    • Better caching using @st.experimental_singleton https://github.com/cceyda/torchserve-dashboard/pull/19
    • Added --init option to initialize torchserve on start https://github.com/cceyda/torchserve-dashboard/pull/19
    • Update to match changes in torchserve v0.6 @cceyda in https://github.com/cceyda/torchserve-dashboard/pull/19

    Full Changelog: https://github.com/cceyda/torchserve-dashboard/compare/v0.5.0...v0.6.0

    Source code(tar.gz)
    Source code(zip)
  • v0.5.0(Nov 30, 2021)

    Update to v0.5, adding support for encrypted model serving (not tested). Update streamlit to v1+

    What's Changed

    • Improvements of package setup logic by @FlorianMF in https://github.com/cceyda/torchserve-dashboard/pull/5
    • WIP: Add type annotations by @FlorianMF in https://github.com/cceyda/torchserve-dashboard/pull/7
    • Update to 0.5.0 by @cceyda in https://github.com/cceyda/torchserve-dashboard/pull/15

    New Contributors

    • @FlorianMF made their first contribution in https://github.com/cceyda/torchserve-dashboard/pull/5

    Full Changelog: https://github.com/cceyda/torchserve-dashboard/compare/v0.4.0...v0.5.0

    Source code(tar.gz)
    Source code(zip)
  • v0.3.3(Jun 12, 2021)

  • v0.3.2(May 9, 2021)

  • v0.3.1(May 9, 2021)

  • v0.2.5(Feb 16, 2021)

  • v0.2.4(Feb 16, 2021)

  • v0.2.3(Oct 15, 2020)

  • v0.2.2(Oct 13, 2020)

  • v0.2.0(Oct 13, 2020)

Owner
Ceyda Cinarel
AI researcher & engineer~ all things NLP 🤖 generative models ★ like trying out new libraries & tools ♥ Python
Ceyda Cinarel
Model that predicts the probability of a Twitter user being anti-vaccination.

stylebody {text-align: justify}/style AVAXTAR: Anti-VAXx Tweet AnalyzeR AVAXTAR is a python package to identify anti-vaccine users on twitter. The

10 Sep 27, 2022
Machine learning algorithms for many-body quantum systems

NetKet NetKet is an open-source project delivering cutting-edge methods for the study of many-body quantum systems with artificial neural networks and

NetKet 413 Dec 31, 2022
The code repository for "PyCIL: A Python Toolbox for Class-Incremental Learning" in PyTorch.

PyCIL: A Python Toolbox for Class-Incremental Learning Introduction • Methods Reproduced • Reproduced Results • How To Use • License • Acknowledgement

Fu-Yun Wang 258 Dec 31, 2022
A Context-aware Visual Attention-based training pipeline for Object Detection from a Webpage screenshot!

CoVA: Context-aware Visual Attention for Webpage Information Extraction Abstract Webpage information extraction (WIE) is an important step to create k

Keval Morabia 41 Jan 01, 2023
Implementation of the paper "Fine-Tuning Transformers: Vocabulary Transfer"

Transformer-vocabulary-transfer Implementation of the paper "Fine-Tuning Transfo

LEYA 13 Nov 30, 2022
Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems

AequeVox Replication Package for AequeVox:Automated Fariness Testing for Speech Recognition Systems README under development. Python Packages Required

Sai Sathiesh 2 Aug 28, 2022
duralava is a neural network which can simulate a lava lamp in an infinite loop.

duralava duralava is a neural network which can simulate a lava lamp in an infinite loop. Example This is not a real lava lamp but a "fake" one genera

Maximilian Bachl 87 Dec 20, 2022
Classifies galaxy morphology with Bayesian CNN

Zoobot Zoobot classifies galaxy morphology with deep learning. This code will let you: Reproduce and improve the Galaxy Zoo DECaLS automated classific

Mike Walmsley 39 Dec 20, 2022
Official repository for "On Improving Adversarial Transferability of Vision Transformers" (2021)

Improving-Adversarial-Transferability-of-Vision-Transformers Muzammal Naseer, Kanchana Ranasinghe, Salman Khan, Fahad Khan, Fatih Porikli arxiv link A

Muzammal Naseer 47 Dec 02, 2022
Keras attention models including botnet,CoaT,CoAtNet,CMT,cotnet,halonet,resnest,resnext,resnetd,volo,mlp-mixer,resmlp,gmlp,levit

Keras_cv_attention_models Keras_cv_attention_models Usage Basic Usage Layers Model surgery AotNet ResNetD ResNeXt ResNetQ BotNet VOLO ResNeSt HaloNet

319 Dec 28, 2022
NAVER BoostCamp Final Project

CV 14조 final project Super Resolution and Deblur module Inference code & Pretrained weight Repo SwinIR Deblur 실행 방법 streamlit run WebServer/Server_SRD

JiSeong Kim 5 Sep 06, 2022
Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021).

AA-RMVSNet Code for AA-RMVSNet: Adaptive Aggregation Recurrent Multi-view Stereo Network (ICCV 2021) in PyTorch. paper link: arXiv | CVF Change Log Ju

Qingtian Zhu 97 Dec 30, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

ENet in Caffe Execution times and hardware requirements Network 1024x512 1280x720 Parameters Model size (fp32) ENet 20.4 ms 32.9 ms 0.36 M 1.5 MB SegN

Timo Sämann 561 Jan 04, 2023
for a paper about leveraging discourse markers for training new models

TSLM-DISCOURSE-MARKERS Scope This repository contains: (1) Code to extract discourse markers from wikipedia (TSA). (1) Code to extract significant dis

International Business Machines 6 Nov 02, 2022
Implementation of the Paper: "Parameterized Hypercomplex Graph Neural Networks for Graph Classification" by Tuan Le, Marco Bertolini, Frank Noé and Djork-Arné Clevert

Parameterized Hypercomplex Graph Neural Networks (PHC-GNNs) PHC-GNNs (Le et al., 2021): https://arxiv.org/abs/2103.16584 PHM Linear Layer Illustration

Bayer AG 26 Aug 11, 2022
Translate darknet to tensorflow. Load trained weights, retrain/fine-tune using tensorflow, export constant graph def to mobile devices

Intro Real-time object detection and classification. Paper: version 1, version 2. Read more about YOLO (in darknet) and download weight files here. In

Trieu 6.1k Jan 04, 2023
POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propagation including diffraction

POPPY: Physical Optics Propagation in Python POPPY (Physical Optics Propagation in Python) is a Python package that simulates physical optical propaga

Space Telescope Science Institute 132 Dec 15, 2022
Jittor implementation of PCT:Point Cloud Transformer

PCT: Point Cloud Transformer This is a Jittor implementation of PCT: Point Cloud Transformer.

MenghaoGuo 547 Jan 03, 2023
NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size

NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size Xuanyi Dong, Lu Liu, Katarzyna Musial, Bogdan Gabrys in IEEE Transactions o

D-X-Y 137 Dec 20, 2022
CARLA: A Python Library to Benchmark Algorithmic Recourse and Counterfactual Explanation Algorithms

CARLA - Counterfactual And Recourse Library CARLA is a python library to benchmark counterfactual explanation and recourse models. It comes out-of-the

Carla Recourse 200 Dec 28, 2022