Model that predicts the probability of a Twitter user being anti-vaccination.

Overview
<style>body {text-align: justify}</style>

AVAXTAR: Anti-VAXx Tweet AnalyzeR

AVAXTAR is a python package to identify anti-vaccine users on twitter. The model outputs complimentary probabilities for [not anti-vaccine, anti-vaccine]. AVAXTAR was trained on 100GB of autolabeled twitter data.

The model supports both Twitter API v1 and v2. To predict with v1, the user needs its consumer key, consumer secret, access token and access secret. The v2 requires only a bearer token, but it can only predict based on user id, not on screen name. Predicting from the v2 api using screen name is only possible if v1 keys are passed to the model.

The methodology behind the package is described in full at {placeholder}

Citation

To cite this paper, please use: {placeholder}

Installation

Attention: this package relies on a pre-trained embedding model from sent2vec, with a size of 5 GB. The model will be automatically downloaded when the package is first instanced on a python script, and will then be saved on the package directory for future usage.

  1. Clone this repo:
git clone https://github.com/Matheus-Schmitz/avaxtar.git
  1. Go to the repo's root:
cd avaxtar/
  1. Install with pip:
pip install .

Usage Example

For prediction, use:

model.predict_from_userid_api_v1(userid)

and:

model.predict_from_userid_api_v2(userid)

For example:

from avaxtar import Avaxtar

consumer_key = ''
consumer_secret = ''
access_token = ''
access_secret = ''
bearer_token = ''


if __name__ == "__main__":

	# Get the userid
	userid = ''

	# Predict
	model = Avaxtar.AvaxModel(consumer_key, consumer_secret, access_token, access_secret, bearer_token)
	pred_proba = model.predict_from_userid_api_v1(userid)

	# Results
	print(f'User: {userid}')
	print(f'Class Probabilities: {pred_proba}')

Package Details

The AVAXTAR classifier is trained on a comprehensive labeled dataset that contains historical tweets of approximately 130K Twitter accounts. Each account from the dataset was assigned one out of two labels: positive for the accounts that actively spread anti-vaccination narrative \~70K and negative for the accounts that do not spread anti vaccination narrative \~60K.

Collecting positive samples: Positive samples are gathered through a snowball method to identify a set of hashtags and keywords associated with the anti-vaccination movement, and then queried the Twitter API and collected the historical tweets of accounts that used any of the identified keywords.

Collecting negative samples: To collect the negative samples, we first performed a mirror approach the positive samples and queried the Twitter API to get historical tweets of accounts that do not use any of the predefined keywords and hashtags. We then enlarge the number of negative samples, by gathering the tweets from accounts that are likely proponents of the vaccination. We identify the pro-ponents of the vaccines in the following way: First, we identify the set of twenty most prominent doctors and health experts active on Twitter. Then collected the covid-related Lists those health experts made on Twitter. From those lists, we collected approximately one thousand Twitter handles of prominent experts and doctors who tweet about the coronavirus and the pandemic. In the next step, we go through their latest 200 tweets and collected the Twitter handles of users who retweeted their tweets. That became our pool of pro-vaccine users. Finally, we collected the historical tweets of users from the pro-vaccine pool.

After model training, we identify the optimal classification threshold to be used, based on maximizing F1 score on the validation set. We find that a threshold of 0.5938 results in the best F1 Score, and thus recommend the usage of that threshold instead of the default threshold of 0.5. Using the optimized threshold, the resulting modelwas then evaluated on a test set of users, achieving the reasonable scores, as shown in the table below.

Metric Negative Class Positive Class
Accuracy 0.8680 0.8680
ROC-AUC 0.9270 0.9270
PRC-AUC 0.8427 0.9677
Precision 0.8675 0.8675
Recall 0.8680 0.8680
F1 0.8677 0.8678
Python program that works as a contact list

Lista de Contatos Programa em Python que funciona como uma lista de contatos. Features Adicionar novo contato Remover contato Atualizar contato Pesqui

Victor B. Lino 3 Dec 16, 2021
Implementation of ToeplitzLDA for spatiotemporal stationary time series data.

Code for the ToeplitzLDA classifier proposed in here. The classifier conforms sklearn and can be used as a drop-in replacement for other LDA classifiers. For in-depth usage refer to the learning from

Jan Sosulski 5 Nov 07, 2022
XtremeDistil framework for distilling/compressing massive multilingual neural network models to tiny and efficient models for AI at scale

XtremeDistilTransformers for Distilling Massive Multilingual Neural Networks ACL 2020 Microsoft Research [Paper] [Video] Releasing [XtremeDistilTransf

Microsoft 125 Jan 04, 2023
Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition - NeurIPS2021

Neural-PIL: Neural Pre-Integrated Lighting for Reflectance Decomposition Project Page | Video | Paper Implementation for Neural-PIL. A novel method wh

Computergraphics (University of Tübingen) 64 Dec 29, 2022
This code is 3d-CNN model that can predict environmental value

Predict-environmental-value-3dCNN This code is 3d-CNN model that can predict environmental value. Firstly, I built a model that can create a lot of bu

1 Jan 06, 2022
Dynamic Bottleneck for Robust Self-Supervised Exploration

Dynamic Bottleneck Introduction This is a TensorFlow based implementation for our paper on "Dynamic Bottleneck for Robust Self-Supervised Exploration"

Bai Chenjia 4 Nov 14, 2022
Pytorch implementation of ProjectedGAN

ProjectedGAN-pytorch Pytorch implementation of ProjectedGAN (https://arxiv.org/abs/2111.01007) Note: this repository is still under developement. @InP

Dominic Rampas 17 Dec 14, 2022
Objax Apache-2Objax (🥉19 · ⭐ 580) - Objax is a machine learning framework that provides an Object.. Apache-2 jax

Objax Tutorials | Install | Documentation | Philosophy This is not an officially supported Google product. Objax is an open source machine learning fr

Google 729 Jan 02, 2023
BisQue is a web-based platform designed to provide researchers with organizational and quantitative analysis tools for 5D image data. Users can extend BisQue by implementing containerized ML workflows.

Overview BisQue is a web-based platform specifically designed to provide researchers with organizational and quantitative analysis tools for up to 5D

Vision Research Lab @ UCSB 26 Nov 29, 2022
Angora is a mutation-based fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without symbolic execution.

Angora Angora is a mutation-based coverage guided fuzzer. The main goal of Angora is to increase branch coverage by solving path constraints without s

833 Jan 07, 2023
MPRNet-Cloud-removal: Progressive cloud removal

MPRNet-Cloud-removal Progressive cloud removal Requirements 1.Pytorch = 1.0 2.Python 3 3.NVIDIA GPU + CUDA 9.0 4.Tensorboard Installation 1.Clone the

Semi 95 Dec 18, 2022
Official implementation of Protected Attribute Suppression System, ICCV 2021

Official implementation of Protected Attribute Suppression System, ICCV 2021

Prithviraj Dhar 6 Jan 01, 2023
The source code for Adaptive Kernel Graph Neural Network at AAAI2022

AKGNN The source code for Adaptive Kernel Graph Neural Network at AAAI2022. Please cite our paper if you think our work is helpful to you: @inproceedi

11 Nov 25, 2022
ImageNet-CoG is a benchmark for concept generalization. It provides a full evaluation framework for pre-trained visual representations which measure how well they generalize to unseen concepts.

The ImageNet-CoG Benchmark Project Website Paper (arXiv) Code repository for the ImageNet-CoG Benchmark introduced in the paper "Concept Generalizatio

NAVER 23 Oct 09, 2022
TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020)

TilinGNN: Learning to Tile with Self-Supervised Graph Neural Network (SIGGRAPH 2020) About The goal of our research problem is illustrated below: give

59 Dec 09, 2022
AFL binary instrumentation

E9AFL --- Binary AFL E9AFL inserts American Fuzzy Lop (AFL) instrumentation into x86_64 Linux binaries. This allows binaries to be fuzzed without the

242 Dec 12, 2022
Code for binary and multiclass model change active learning, with spectral truncation implementation.

Model Change Active Learning Paper (To Appear) Python code for doing active learning in graph-based semi-supervised learning (GBSSL) paradigm. Impleme

Kevin Miller 1 Jul 24, 2022
Anomaly detection related books, papers, videos, and toolboxes

Anomaly Detection Learning Resources Outlier Detection (also known as Anomaly Detection) is an exciting yet challenging field, which aims to identify

Yue Zhao 6.7k Dec 31, 2022
A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swar.

Omni-swarm A Decentralized Omnidirectional Visual-Inertial-UWB State Estimation System for Aerial Swarm Introduction Omni-swarm is a decentralized omn

HKUST Aerial Robotics Group 99 Dec 23, 2022
Codeflare - Scale complex AI/ML pipelines anywhere

Scale complex AI/ML pipelines anywhere CodeFlare is a framework to simplify the integration, scaling and acceleration of complex multi-step analytics

CodeFlare 169 Nov 29, 2022