NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size

Overview

NATS-Bench: Benchmarking NAS Algorithms for Architecture Topology and Size

Xuanyi Dong, Lu Liu, Katarzyna Musial, Bogdan Gabrys

in IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2021

Abstract: Neural architecture search (NAS) has attracted a lot of attention and has been illustrated to bring tangible benefits in a large number of applications in the past few years. Network topology and network size have been regarded as two of the most important aspects for the performance of deep learning models and the community has spawned lots of searching algorithms for both of those aspects of the neural architectures. However, the performance gain from these searching algorithms is achieved under different search spaces and training setups. This makes the overall performance of the algorithms incomparable and the improvement from a sub-module of the searching model unclear. In this paper, we propose NATS-Bench, a unified benchmark on searching for both topology and size, for (almost) any up-to-date NAS algorithm. NATS-Bench includes the search space of 15,625 neural cell candidates for architecture topology and 32,768 for architecture size on three datasets. We analyze the validity of our benchmark in terms of various criteria and performance comparison of all candidates in the search space. We also show the versatility of NATS-Bench by benchmarking 13 recent state-of-the-art NAS algorithms on it. All logs and diagnostic information trained using the same setup for each candidate are provided. This facilitates a much larger community of researchers to focus on developing better NAS algorithms in a more comparable and computationally effective environment.

You can use pip install nats_bench to install the library of NATS-Bench or install from source by python setup.py install.

If you are seeking how to re-create NATS-Bench from scratch or reproduce benchmarked results, please see use AutoDL-Projects and see these instructions.

If you have questions, please ask at here or email me :)

This figure is the main difference between NATS-Bench, NAS-Bench-101, and NAS-Bench-201. The topology search space ($\mathcal{S}_t$) in NATS-Bench is the same as NAS-Bench-201, while we upgrade with results of more runs for the architecture candidates, and the benchmarked NAS algorithms have better hyperparameters.

Preparation and Download

Step-1: download raw vision datasets. (you can skip this one if you do not use weight-sharing NAS or re-create NATS-Bench).

In NATS-Bench, we (create and) use three image datasets -- CIFAR-10, CIFAR-100, and ImageNet16-120. For more details, please see Sec-3.2 in the NATS-Bench paper. To download these three datasets, please find them at Google Drive. To create the ImageNet16-120 PyTorch dataset, please call AutoDL-Projects/lib/datasets/ImageNet16, by using:

train_data = ImageNet16(root, True , train_transform, 120)
test_data  = ImageNet16(root, False, test_transform , 120)

Step-2: download benchmark files of NATS-Bench.

The latest benchmark file of NATS-Bench can be downloaded from Google Drive. After download NATS-[tss/sss]-[version]-[md5sum]-simple.tar, please uncompress it by using tar xvf [file_name]. We highly recommend to put the downloaded benchmark file (NATS-sss-v1_0-50262.pickle.pbz2 / NATS-tss-v1_0-3ffb9.pickle.pbz2) or uncompressed archive (NATS-sss-v1_0-50262-simple / NATS-tss-v1_0-3ffb9-simple) into $TORCH_HOME. In this way, our api will automatically find the path for these benchmark files, which are convenient for the users. Otherwise, you need to indicate the file when creating the benchmark instance manually.

The history of benchmark files is as follows, tss indicates the topology search space and sss indicates the size search space. The benchmark file is used when creating the NATS-Bench instance with fast_mode=False. The archive is used when fast_mode=True, where archive is a directory containing 15,625 files for tss or contains 32,768 files for sss. Each file contains all the information for a specific architecture candidate. The full archive is similar to archive, while each file in full archive contains the trained weights. Since the full archive is too large, we use split -b 30G file_name file_name to split it into multiple 30G chunks. To merge the chunks into the original full archive, you can use cat file_name* > file_name.

Date benchmark file (tss) archive (tss) full archive (tss) benchmark file (sss) archive (sss) full archive (sss)
2020.08.31 NATS-tss-v1_0-3ffb9.pickle.pbz2 NATS-tss-v1_0-3ffb9-simple.tar NATS-tss-v1_0-3ffb9-full NATS-sss-v1_0-50262.pickle.pbz2 NATS-sss-v1_0-50262-simple.tar NATS-sss-v1_0-50262-full
2021.04.22 (Baidu-Pan) NATS-tss-v1_0-3ffb9.pickle.pbz2 (code: 8duj) NATS-tss-v1_0-3ffb9-simple.tar (code: tu1e) NATS-tss-v1_0-3ffb9-full (code:ssub) NATS-sss-v1_0-50262.pickle.pbz2 (code: za2h) NATS-sss-v1_0-50262-simple.tar (code: e4t9) NATS-sss-v1_0-50262-full (code: htif)

These benchmark files (without pretrained weights) can also be downloaded from Dropbox, OneDrive or Baidu-Pan (extract code: h6pm).

For the full checkpoints in NATS-*ss-*-full, we split the file into multiple parts (NATS-*ss-*-full.tara*) since they are too large to upload. Each file is about 30GB. For Baidu Pan, since they restrict the maximum size of each file, we further split NATS-*ss-*-full.tara* into NATS-*ss-*-full.tara*-aa and NATS-*ss-*-full.tara*-ab. All splits are created by the command split.

Note: if you encounter the quota exceed erros when download from Google Drive, please try to (1) login your personal Google account, (2) right-click-copy the files to your personal Google Drive, and (3) download from your personal Google Drive.

Usage

See more examples at notebooks.

1, create the benchmark instance:

from nats_bench import create
# Create the API instance for the size search space in NATS
api = create(None, 'sss', fast_mode=True, verbose=True)

# Create the API instance for the topology search space in NATS
api = create(None, 'tss', fast_mode=True, verbose=True)

2, query the performance:

# Query the loss / accuracy / time for 1234-th candidate architecture on CIFAR-10
# info is a dict, where you can easily figure out the meaning by key
info = api.get_more_info(1234, 'cifar10')

# Query the flops, params, latency. info is a dict.
info = api.get_cost_info(12, 'cifar10')

# Simulate the training of the 1224-th candidate:
validation_accuracy, latency, time_cost, current_total_time_cost = api.simulate_train_eval(1224, dataset='cifar10', hp='12')

3, create the instance of an architecture candidate in NATS-Bench:

# Create the instance of th 12-th candidate for CIFAR-10.
# To keep NATS-Bench repo concise, we did not include any model-related codes here because they rely on PyTorch.
# The package of [models] is defined at https://github.com/D-X-Y/AutoDL-Projects
#   so that one need to first import this package.
import xautodl
from xautodl.models import get_cell_based_tiny_net
config = api.get_net_config(12, 'cifar10')
network = get_cell_based_tiny_net(config)

# Load the pre-trained weights: params is a dict, where the key is the seed and value is the weights.
params = api.get_net_param(12, 'cifar10', None)
network.load_state_dict(next(iter(params.values())))

4, others:

# Clear the parameters of the 12-th candidate.
api.clear_params(12)

# Reload all information of the 12-th candidate.
api.reload(index=12)

Please see api_test.py for more examples.

from nats_bench import api_test
api_test.test_nats_bench_tss('NATS-tss-v1_0-3ffb9-simple')
api_test.test_nats_bench_tss('NATS-sss-v1_0-50262-simple')

How to Re-create NATS-Bench from Scratch

You need to use the AutoDL-Projects repo to re-create NATS-Bench from scratch.

The Size Search Space

The following command will train all architecture candidate in the size search space with 90 epochs and use the random seed of 777. If you want to use a different number of training epochs, please replace 90 with it, such as 01 or 12.

bash ./scripts/NATS-Bench/train-shapes.sh 00000-32767 90 777

The checkpoint of all candidates are located at output/NATS-Bench-size by default.

After training these candidate architectures, please use the following command to re-organize all checkpoints into the official benchmark file.

python exps/NATS-Bench/sss-collect.py

The Topology Search Space

The following command will train all architecture candidate in the topology search space with 200 epochs and use the random seed of 777/888/999. If you want to use a different number of training epochs, please replace 200 with it, such as 12.

bash scripts/NATS-Bench/train-topology.sh 00000-15624 200 '777 888 999'

The checkpoint of all candidates are located at output/NATS-Bench-topology by default.

After training these candidate architectures, please use the following command to re-organize all checkpoints into the official benchmark file.

python exps/NATS-Bench/tss-collect.py

To Reproduce 13 Baseline NAS Algorithms in NATS-Bench

You need to use the AutoDL-Projects repo to run 13 baseline NAS methods. Here are a brief introduction on how to run each algorithm (NATS-algos).

Reproduce NAS methods on the topology search space

Please use the following commands to run different NAS methods on the topology search space:

Four multi-trial based methods:
python ./exps/NATS-algos/reinforce.py       --dataset cifar100 --search_space tss --learning_rate 0.01
python ./exps/NATS-algos/regularized_ea.py  --dataset cifar100 --search_space tss --ea_cycles 200 --ea_population 10 --ea_sample_size 3
python ./exps/NATS-algos/random_wo_share.py --dataset cifar100 --search_space tss
python ./exps/NATS-algos/bohb.py            --dataset cifar100 --search_space tss --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3

DARTS (first order):
python ./exps/NATS-algos/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo darts-v1
python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo darts-v1
python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo darts-v1

DARTS (second order):
python ./exps/NATS-algos/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo darts-v2
python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo darts-v2
python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo darts-v2

GDAS:
python ./exps/NATS-algos/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo gdas
python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo gdas
python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16

SETN:
python ./exps/NATS-algos/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo setn
python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo setn
python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo setn

Random Search with Weight Sharing:
python ./exps/NATS-algos/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo random
python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo random
python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo random

ENAS:
python ./exps/NATS-algos/search-cell.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo enas --arch_weight_decay 0 --arch_learning_rate 0.001 --arch_eps 0.001
python ./exps/NATS-algos/search-cell.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo enas --arch_weight_decay 0 --arch_learning_rate 0.001 --arch_eps 0.001
python ./exps/NATS-algos/search-cell.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo enas --arch_weight_decay 0 --arch_learning_rate 0.001 --arch_eps 0.001

Reproduce NAS methods on the size search space

Please use the following commands to run different NAS methods on the size search space:

Four multi-trial based methods:
python ./exps/NATS-algos/reinforce.py       --dataset cifar100 --search_space sss --learning_rate 0.01
python ./exps/NATS-algos/regularized_ea.py  --dataset cifar100 --search_space sss --ea_cycles 200 --ea_population 10 --ea_sample_size 3
python ./exps/NATS-algos/random_wo_share.py --dataset cifar100 --search_space sss
python ./exps/NATS-algos/bohb.py            --dataset cifar100 --search_space sss --num_samples 4 --random_fraction 0.0 --bandwidth_factor 3


Run Transformable Architecture Search (TAS), proposed in Network Pruning via Transformable Architecture Search, NeurIPS 2019

python ./exps/NATS-algos/search-size.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo tas --rand_seed 777
python ./exps/NATS-algos/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo tas --rand_seed 777
python ./exps/NATS-algos/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo tas --rand_seed 777


Run the channel search strategy in FBNet-V2 -- masking + Gumbel-Softmax :

python ./exps/NATS-algos/search-size.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo mask_gumbel --rand_seed 777
python ./exps/NATS-algos/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo mask_gumbel --rand_seed 777
python ./exps/NATS-algos/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo mask_gumbel --rand_seed 777


Run the channel search strategy in TuNAS -- masking + sampling :

python ./exps/NATS-algos/search-size.py --dataset cifar10  --data_path $TORCH_HOME/cifar.python --algo mask_rl --arch_weight_decay 0 --rand_seed 777 --use_api 0
python ./exps/NATS-algos/search-size.py --dataset cifar100 --data_path $TORCH_HOME/cifar.python --algo mask_rl --arch_weight_decay 0 --rand_seed 777
python ./exps/NATS-algos/search-size.py --dataset ImageNet16-120 --data_path $TORCH_HOME/cifar.python/ImageNet16 --algo mask_rl --arch_weight_decay 0 --rand_seed 777

Final Discovered Architectures for Each Algorithm

The architecture index can be found by use api.query_index_by_arch(architecture_string).

The final discovered architecture ID on CIFAR-10:

DARTS (first order):
|skip_connect~0|+|skip_connect~0|skip_connect~1|+|skip_connect~0|skip_connect~1|skip_connect~2|
|skip_connect~0|+|skip_connect~0|skip_connect~1|+|skip_connect~0|skip_connect~1|skip_connect~2|
|skip_connect~0|+|skip_connect~0|skip_connect~1|+|skip_connect~0|skip_connect~1|skip_connect~2|

DARTS (second order):
|skip_connect~0|+|skip_connect~0|skip_connect~1|+|skip_connect~0|skip_connect~1|skip_connect~2|
|skip_connect~0|+|skip_connect~0|skip_connect~1|+|skip_connect~0|skip_connect~1|skip_connect~2|
|skip_connect~0|+|skip_connect~0|skip_connect~1|+|skip_connect~0|skip_connect~1|skip_connect~2|

GDAS:
|nor_conv_3x3~0|+|nor_conv_3x3~0|none~1|+|nor_conv_1x1~0|nor_conv_3x3~1|nor_conv_3x3~2|
|nor_conv_3x3~0|+|nor_conv_3x3~0|none~1|+|nor_conv_3x3~0|nor_conv_3x3~1|nor_conv_3x3~2|
|avg_pool_3x3~0|+|nor_conv_3x3~0|skip_connect~1|+|nor_conv_3x3~0|nor_conv_1x1~1|nor_conv_1x1~2|

The final discovered architecture ID on CIFAR-100:

DARTS (V1):
|none~0|+|skip_connect~0|none~1|+|skip_connect~0|nor_conv_1x1~1|none~2|
|none~0|+|skip_connect~0|none~1|+|skip_connect~0|nor_conv_1x1~1|none~2|
|skip_connect~0|+|skip_connect~0|none~1|+|skip_connect~0|nor_conv_1x1~1|nor_conv_3x3~2|

DARTS (V2):
|none~0|+|skip_connect~0|none~1|+|skip_connect~0|nor_conv_1x1~1|skip_connect~2|
|skip_connect~0|+|nor_conv_3x3~0|none~1|+|skip_connect~0|none~1|none~2|
|skip_connect~0|+|nor_conv_1x1~0|none~1|+|nor_conv_3x3~0|skip_connect~1|none~2|

GDAS:
|nor_conv_3x3~0|+|nor_conv_1x1~0|none~1|+|avg_pool_3x3~0|nor_conv_3x3~1|nor_conv_3x3~2|
|avg_pool_3x3~0|+|nor_conv_1x1~0|none~1|+|nor_conv_3x3~0|avg_pool_3x3~1|nor_conv_1x1~2|
|avg_pool_3x3~0|+|nor_conv_3x3~0|none~1|+|nor_conv_3x3~0|nor_conv_1x1~1|nor_conv_1x1~2|

The final discovered architecture ID on ImageNet-16-120:

DARTS (V1):
|none~0|+|skip_connect~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|
|none~0|+|skip_connect~0|none~1|+|skip_connect~0|none~1|nor_conv_3x3~2|
|none~0|+|skip_connect~0|none~1|+|skip_connect~0|none~1|nor_conv_1x1~2|

DARTS (V2):
|none~0|+|skip_connect~0|none~1|+|skip_connect~0|none~1|skip_connect~2|

GDAS:
|none~0|+|none~0|none~1|+|nor_conv_3x3~0|none~1|none~2|
|none~0|+|none~0|none~1|+|nor_conv_3x3~0|none~1|none~2|
|none~0|+|none~0|none~1|+|nor_conv_3x3~0|none~1|none~2|

Others

We use black for Python code formatter. Please use black . -l 120.

Citation

If you find that NATS-Bench helps your research, please consider citing it:

@article{dong2021nats,
  title   = {{NATS-Bench}: Benchmarking NAS Algorithms for Architecture Topology and Size},
  author  = {Dong, Xuanyi and Liu, Lu and Musial, Katarzyna and Gabrys, Bogdan},
  doi     = {10.1109/TPAMI.2021.3054824},
  journal = {IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI)},
  year    = {2021},
  note    = {\mbox{doi}:\url{10.1109/TPAMI.2021.3054824}}
}
@inproceedings{dong2020nasbench201,
  title     = {{NAS-Bench-201}: Extending the Scope of Reproducible Neural Architecture Search},
  author    = {Dong, Xuanyi and Yang, Yi},
  booktitle = {International Conference on Learning Representations (ICLR)},
  url       = {https://openreview.net/forum?id=HJxyZkBKDr},
  year      = {2020}
}
Owner
D-X-Y
Research Scientist on AutoDL.
D-X-Y
Dataset para entrenamiento de yoloV3 para 4 clases

Deteccion de objetos en video Este repo basado en el proyecto PyTorch YOLOv3 para correr detección de objetos sobre video. Construí sobre este proyect

1 Nov 01, 2021
RoIAlign & crop_and_resize for PyTorch

RoIAlign for PyTorch This is a PyTorch version of RoIAlign. This implementation is based on crop_and_resize and supports both forward and backward on

Long Chen 530 Jan 07, 2023
OptaPlanner wrappers for Python. Currently significantly slower than OptaPlanner in Java or Kotlin.

OptaPy is an AI constraint solver for Python to optimize the Vehicle Routing Problem, Employee Rostering, Maintenance Scheduling, Task Assignment, School Timetabling, Cloud Optimization, Conference S

OptaPy 211 Jan 02, 2023
Pytorch code for "Text-Independent Speaker Verification Using 3D Convolutional Neural Networks".

:speaker: Deep Learning & 3D Convolutional Neural Networks for Speaker Verification

Amirsina Torfi 114 Dec 18, 2022
The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies

REST The PyTorch implementation of paper REST: Debiased Social Recommendation via Reconstructing Exposure Strategies. Usage Download dataset Download

DMIRLAB 2 Mar 13, 2022
The Official PyTorch Implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 spotlight paper)

Official PyTorch implementation of "VAEBM: A Symbiosis between Variational Autoencoders and Energy-based Models" (ICLR 2021 Spotlight Paper) Zhisheng

NVIDIA Research Projects 45 Dec 26, 2022
A toolset for creating Qualtrics-based IAT experiments

Qualtrics IAT Tool A web app for generating the Implicit Association Test (IAT) running on Qualtrics Online Web App The app is hosted by Streamlit, a

0 Feb 12, 2022
A Self-Supervised Contrastive Learning Framework for Aspect Detection

AspDecSSCL A Self-Supervised Contrastive Learning Framework for Aspect Detection This repository is a pytorch implementation for the following AAAI'21

Tian Shi 30 Dec 28, 2022
Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Equivariant CNNs for the sphere and SO(3) implemented in PyTorch

Jonas Köhler 893 Dec 28, 2022
'A C2C E-COMMERCE TRUST MODEL BASED ON REPUTATION' Python implementation

Project description A library providing functionalities to calculate reputation and degree of trust on C2C ecommerce platforms. The work is fully base

Davide Bigotti 2 Dec 14, 2022
Multi-Person Extreme Motion Prediction

Multi-Person Extreme Motion Prediction Implementation for paper Wen Guo, Xiaoyu Bie, Xavier Alameda-Pineda, Francesc Moreno-Noguer, Multi-Person Extre

GUO-W 38 Nov 15, 2022
Transport Mode detection - can detect the mode of transport with the help of features such as acceeration,jerk etc

title emoji colorFrom colorTo sdk app_file pinned Transport_Mode_Detector 🚀 purple yellow gradio app.py false Configuration title: string Display tit

Nishant Rajadhyaksha 3 Jan 16, 2022
Code release for "Masked-attention Mask Transformer for Universal Image Segmentation"

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexander Kirillov, Ro

Meta Research 1.2k Jan 02, 2023
Code for Deep Single-image Portrait Image Relighting

Deep Single-Image Portrait Relighting [Project Page] Hao Zhou, Sunil Hadap, Kalyan Sunkavalli, David W. Jacobs. In ICCV, 2019 Overview Test script for

438 Jan 05, 2023
A Gura parser implementation for Python

Gura Python parser This repository contains the implementation of a Gura (compliant with version 1.0.0) format parser in Python. Installation pip inst

Gura Config Lang 19 Jan 25, 2022
Facilitates implementing deep neural-network backbones, data augmentations

Introduction Nowadays, the training of Deep Learning models is fragmented and unified. When AI engineers face up with one specific task, the common wa

40 Dec 29, 2022
Multivariate Boosted TRee

Multivariate Boosted TRee What is MBTR MBTR is a python package for multivariate boosted tree regressors trained in parameter space. The package can h

SUPSI-DACD-ISAAC 61 Dec 19, 2022
Train the HRNet model on ImageNet

High-resolution networks (HRNets) for Image classification News [2021/01/20] Add some stronger ImageNet pretrained models, e.g., the HRNet_W48_C_ssld_

HRNet 866 Jan 04, 2023
Pytorch implementation for the paper: Contrastive Learning for Cold-start Recommendation

Contrastive Learning for Cold-start Recommendation This is our Pytorch implementation for the paper: Yinwei Wei, Xiang Wang, Qi Li, Liqiang Nie, Yan L

45 Dec 13, 2022
Convolutional Neural Networks on Graphs with Fast Localized Spectral Filtering

Graph ConvNets in PyTorch October 15, 2017 Xavier Bresson http://www.ntu.edu.sg/home/xbresson https://github.com/xbresson https://twitter.com/xbresson

Xavier Bresson 287 Jan 04, 2023