Pytorch implementation for the paper: Contrastive Learning for Cold-start Recommendation

Related tags

Deep LearningCLCRec
Overview

Contrastive Learning for Cold-start Recommendation

This is our Pytorch implementation for the paper:

Yinwei Wei, Xiang Wang, Qi Li, Liqiang Nie, Yan Li, Xuanping Li, and Tat-Seng Chua (2021). Contrastive Learning for Cold-start Recommendation, Paper in ACM DL or Paper in arXiv. In ACM MM`21, Chengdu, China, Oct. 20-24, 2021
Author: Dr. Yinwei Wei (weiyinwei at hotmail.com)

Introduction

In this work, we reformulate the cold-start item representation learning from an information-theoretic standpoint. It aims to maximize the mutual dependencies between item content and collaborative signals. Specifically, the representation learning is theoretically lower-bounded by the integration of two terms: mutual information between collaborative embeddings of users and items, and mutual information between collaborative embeddings and feature representations of items. To model such a learning process, we devise a new objective function founded upon contrastive learning and develop a new Contrastive Learning-based Cold-start Recommendation framework (CLCRec).

Citation

If you want to use our codes and datasets in your research, please cite:

@inproceedings{CLCRec,
  title     = {Contrastive Learning for Cold-start Recommendation},
  author    = {Wei, Yinwei and 
               Wang, Xiang and 
               Qi, Li and
               Nie, Liqiang and 
               Li, Yan and 
               Li, Xuanqing and 
               Chua, Tat-Seng},
  booktitle = {Proceedings of the 29th ACM International Conference on Multimedia},
  pages     = {--},
  year      = {2021}
}

Environment Requirement

The code has been tested running under Python 3.5.2. The required packages are as follows:

  • Pytorch == 1.1.0
  • torch-cluster == 1.4.2
  • torch-geometric == 1.2.1
  • torch-scatter == 1.2.0
  • torch-sparse == 0.4.0
  • numpy == 1.16.0

Example to Run the Codes

The instruction of commands has been clearly stated in the codes.

  • Movielens dataset
    python main.py --model_name='CLCRec' --l_r=0.001 --reg_weight=0.1 --num_workers=4 --num_neg=128 --has_a=True --has_t=True --has_v=True --lr_lambda=0.5 --temp_value=2.0 --num_sample=0.5

  • Amazon dataset
    python main.py --model_name='CLCRec' --data_path=amazon --l_r=0.001 --reg_weight=0.001 --num_workers=4 --num_neg=512 --has_v=True --lr_lambda=0.9 --num_sample=0.5

Some important arguments:

  • lr_lambda: It specifics the value of lambda to balance the U-I and R-E mutual information.

  • num_neg This parameter indicates the number of negative sampling.

  • num_sample: This parameter indicates the probability of hybrid contrastive training.

  • temp_value: It specifics the temprature value in density ratio functions.

Dataset

We provide two processed datasets: Movielens and Amazon. (The details could be found in our article) For Kwai and Tiktok datasets, due to the copyright, please connect the owners of datasets.

Owner
Thank you for your attention. If you have any questions, please email me.
Pytorch modules for paralel models with same architecture. Ideal for multi agent-based systems

WideLinears Pytorch parallel Neural Networks A package of pytorch modules for fast paralellization of separate deep neural networks. Ideal for agent-b

1 Dec 17, 2021
Instance Segmentation by Jointly Optimizing Spatial Embeddings and Clustering Bandwidth

Instance segmentation by jointly optimizing spatial embeddings and clustering bandwidth This codebase implements the loss function described in: Insta

209 Dec 07, 2022
This project uses reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can learn to read tape. The project is dedicated to hero in life great Jesse Livermore.

Reinforcement-trading This project uses Reinforcement learning on stock market and agent tries to learn trading. The goal is to check if the agent can

Deepender Singla 1.4k Dec 22, 2022
A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection

Confluence: A Robust Non-IoU Alternative to Non-Maxima Suppression in Object Detection 1. 介绍 用以替代 NMS,在所有 bbox 中挑选出最优的集合。 NMS 仅考虑了 bbox 的得分,然后根据 IOU 来

44 Sep 15, 2022
Experiments for Neural Flows paper

Neural Flows: Efficient Alternative to Neural ODEs [arxiv] TL;DR: We directly model the neural ODE solutions with neural flows, which is much faster a

54 Dec 07, 2022
Experiments for Fake News explainability project

fake-news-explainability Experiments for fake news explainability project This repository only contains the notebooks used to train the models and eva

Lorenzo Flores (Lj) 1 Dec 03, 2022
Voxel-based Network for Shape Completion by Leveraging Edge Generation (ICCV 2021, oral)

Voxel-based Network for Shape Completion by Leveraging Edge Generation This is the PyTorch implementation for the paper "Voxel-based Network for Shape

10 Dec 04, 2022
Code and description for my BSc Project, September 2021

BSc-Project Disclaimer: This repo consists of only the additional python scripts necessary to run the agent. To run the project on your own personal d

Matin Tavakoli 20 Jul 19, 2022
A toy compiler that can convert Python scripts to pickle bytecode 🥒

Pickora 🐰 A small compiler that can convert Python scripts to pickle bytecode. Requirements Python 3.8+ No third-party modules are required. Usage us

ꌗᖘ꒒ꀤ꓄꒒ꀤꈤꍟ 68 Jan 04, 2023
A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking.

BeatNet A package for music online and offline rhythmic information analysis including music Beat, downbeat, tempo and meter tracking. This repository

Mojtaba Heydari 157 Dec 27, 2022
RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

RM Operation can equivalently convert ResNet to VGG, which is better for pruning; and can help RepVGG perform better when the depth is large.

184 Jan 04, 2023
Easily pull telemetry data and create beautiful visualizations for analysis.

This repository is a work in progress. Anything and everything is subject to change. Porpo Table of Contents Porpo Table of Contents General Informati

Ryan Dawes 33 Nov 30, 2022
fcn by tensorflow

Update An example on how to integrate this code into your own semantic segmentation pipeline can be found in my KittiSeg project repository. tensorflo

9 May 22, 2022
Only works with the dashboard version / branch of jesse

Jesse optuna Only works with the dashboard version / branch of jesse. The config.yml should be self-explainatory. Installation # install from git pip

Markus K. 8 Dec 04, 2022
(to be released) [NeurIPS'21] Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs

Higher-Order Transformers Kim J, Oh S, Hong S, Transformers Generalize DeepSets and Can be Extended to Graphs and Hypergraphs, NeurIPS 2021. [arxiv] W

Jinwoo Kim 44 Dec 28, 2022
Residual Pathway Priors for Soft Equivariance Constraints

Residual Pathway Priors for Soft Equivariance Constraints This repo contains the implementation and the experiments for the paper Residual Pathway Pri

Marc Finzi 13 Oct 12, 2022
Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Implementation of temporal pooling methods studied in [ICIP'20] A Comparative Evaluation Of Temporal Pooling Methods For Blind Video Quality Assessment

Zhengzhong Tu 5 Sep 16, 2022
Airbus Ship Detection Challenge

Airbus Ship Detection Challenge This is an open solution to the Airbus Ship Detection Challenge. Our goals We are building entirely open solution to t

minerva.ml 55 Nov 29, 2022
A Diagnostic Dataset for Compositional Language and Elementary Visual Reasoning

CLEVR Dataset Generation This is the code used to generate the CLEVR dataset as described in the paper: CLEVR: A Diagnostic Dataset for Compositional

Facebook Research 503 Jan 04, 2023
Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks

Implementation for On Provable Benefits of Depth in Training Graph Convolutional Networks Setup This implementation is based on PyTorch = 1.0.0. Smal

Weilin Cong 8 Oct 28, 2022