Immortal tracker

Overview

Immortal_tracker

Prerequisite

Our code is tested for Python 3.6.
To install required liabraries:

pip install -r requirements.txt

Waymo Open Dataset

Prepare dataset & off-the-shelf detections

Download WOD perception dataset:

#Waymo Dataset         
└── waymo
       ├── training (not required)  
       ├── validation   
       ├── testing 

To extract timestamp infos/ego infos from .tfrecord files, run the following:

bash preparedata/waymo/waymo_preparedata.sh  /
   
    /waymo

   

Run the following to convert detection results into to .npz files. The detection results should be in official WOD submission format(.bin)
We recommand you to use CenterPoint(two-frame model for tracking) detection results for reproducing our results. Please follow https://github.com/tianweiy/CenterPoint or email its author for CenterPoint detection results.

bash preparedata/waymo/waymo_convert_detection.sh 
   
    /detection_result.bin cp

#you can also use other detections:
#bash preparedata/waymo/waymo_convert_detection.sh 
     
     

     
    
   

Inference

Use the following command to start inferencing on WOD. The validation set is used by default.

python main_waymo.py --name immortal --det_name cp --config_path configs/waymo_configs/immortal.yaml --process 8

Evaluation with WOD official devkit:

Follow https://github.com/waymo-research/waymo-open-dataset to build the evaluation tools and run the following command for evaluation:

#Convert the tracking results into .bin file
python evaluation/waymo/pred_bin.py --name immortal
#For evaluation

   
    /bazel-bin/waymo_open_dataset/metrics/tools/compute_tracking_metrics_main mot_results/waymo/validation/immortal/bin/pred.bin 
    
     /validation_gt.bin

    
   

nuScenes Dataset

Prepare dataset & off-the-shelf detections

Download nuScenes perception dataset

# For nuScenes Dataset         
└── NUSCENES_DATASET_ROOT
       ├── samples       
       ├── sweeps       
       ├── maps         
       ├── v1.0-trainval 
       ├── v1.0-test

To extract timestamp infos/ego infos, run the following:

bash preparedata/nuscenes/nu_preparedata.sh 
   
    /nuscenes

   

Run the following to convert detection results into to .npz files. The detection results should be in official nuScenes submission format(.json)
We recommand you to use centerpoint(two-frame model for tracking) detection results for reproducing our results.

bash preparedata/nuscenes/nu_convert_detection.sh  
   
    /detection_result.json cp

#you can also use other detections:
#bash preparedata/nuscenes/nu_convert_detection.sh 
     
     

     
    
   

Inference

Use the following command to start inferencing on nuScenes. The validation set is used by default.

python main_nuscenes.py --name immortal --det_name cp --config_path configs/nu_configs/immortal.yaml --process 8

Evaluation with nuScenes official devkit:

Follow https://github.com/nutonomy/nuscenes-devkit to build the official evaluation tools for nuScenes. Run the following command for evaluation:

/nuscenes ">
#To convert tracking results into .json format
bash evaluation/nuscenes/pipeline.sh immortal
#To evaluate
python 
   
    /nuscenes-devkit/python-sdk/nuscenes/eval/tracking/evaluate.py \
"./mot_results/nuscenes/validation_2hz/immortal/results/results.json" \
--output_dir "./mot_results/nuscenes/validation_2hz/immortal/results" \
--eval_set "val" \
--dataroot 
    
     /nuscenes

    
   
SIR model parameter estimation using a novel algorithm for differentiated uniformization.

TenSIR Parameter estimation on epidemic data under the SIR model using a novel algorithm for differentiated uniformization of Markov transition rate m

The Spang Lab 4 Nov 30, 2022
bio_inspired_min_nets_improve_the_performance_and_robustness_of_deep_networks

Code Submission for: Bio-inspired Min-Nets Improve the Performance and Robustness of Deep Networks Run with docker To build a docker environment, chan

0 Dec 09, 2021
An open-source Kazakh named entity recognition dataset (KazNERD), annotation guidelines, and baseline NER models.

Kazakh Named Entity Recognition This repository contains an open-source Kazakh named entity recognition dataset (KazNERD), named entity annotation gui

ISSAI 9 Dec 23, 2022
Fast, differentiable sorting and ranking in PyTorch

Torchsort Fast, differentiable sorting and ranking in PyTorch. Pure PyTorch implementation of Fast Differentiable Sorting and Ranking (Blondel et al.)

Teddy Koker 655 Jan 04, 2023
ICRA 2021 "Towards Precise and Efficient Image Guided Depth Completion"

PENet: Precise and Efficient Depth Completion This repo is the PyTorch implementation of our paper to appear in ICRA2021 on "Towards Precise and Effic

232 Dec 25, 2022
Rule based classification A hotel s customers dataset

Rule-based-classification-A-hotel-s-customers-dataset- Aim: Categorize new customers by segment and predict how much revenue they can generate This re

Şebnem 4 Jan 02, 2022
Unofficial TensorFlow implementation of Protein Interface Prediction using Graph Convolutional Networks.

[TensorFlow] Protein Interface Prediction using Graph Convolutional Networks Unofficial TensorFlow implementation of Protein Interface Prediction usin

YeongHyeon Park 9 Oct 25, 2022
Boostcamp CV Serving For Python

Boostcamp-CV-Serving Prerequisites MySQL GCP Cloud Storage GCP key file Sentry Streamlit Cloud Secrets: .streamlit/secrets.toml #DO NOT SHARE THIS I

Jungwon Seo 19 Feb 22, 2022
FANet - Real-time Semantic Segmentation with Fast Attention

FANet Real-time Semantic Segmentation with Fast Attention Ping Hu, Federico Perazzi, Fabian Caba Heilbron, Oliver Wang, Zhe Lin, Kate Saenko , Stan Sc

Ping Hu 42 Nov 30, 2022
An open source Jetson Nano baseboard and tools to design your own.

My Jetson Nano Baseboard This basic baseboard gives the user the foundation and the flexibility to design their own baseboard for the Jetson Nano. It

NVIDIA AI IOT 57 Dec 29, 2022
Pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model'

RTK-PAD This is an official pytorch implementation of 'Fingerprint Presentation Attack Detector Using Global-Local Model', which is accepted by IEEE T

6 Aug 01, 2022
QueryInst: Parallelly Supervised Mask Query for Instance Segmentation

QueryInst is a simple and effective query based instance segmentation method driven by parallel supervision on dynamic mask heads, which outperforms previous arts in terms of both accuracy and speed.

Hust Visual Learning Team 386 Jan 08, 2023
Source code for the BMVC-2021 paper "SimReg: Regression as a Simple Yet Effective Tool for Self-supervised Knowledge Distillation".

SimReg: A Simple Regression Based Framework for Self-supervised Knowledge Distillation Source code for the paper "SimReg: Regression as a Simple Yet E

9 Oct 15, 2022
Reimplementation of the paper `Human Attention Maps for Text Classification: Do Humans and Neural Networks Focus on the Same Words? (ACL2020)`

Human Attention for Text Classification Re-implementation of the paper Human Attention Maps for Text Classification: Do Humans and Neural Networks Foc

Shunsuke KITADA 15 Dec 13, 2021
Res2Net for Instance segmentation and Object detection using MaskRCNN

Res2Net for Instance segmentation and Object detection using MaskRCNN Since the MaskRCNN-benchmark of facebook is deprecated, we suggest to use our mm

Res2Net Applications 55 Oct 30, 2022
Tensorflow implementation of MIRNet for Low-light image enhancement

MIRNet Tensorflow implementation of the MIRNet architecture as proposed by Learning Enriched Features for Real Image Restoration and Enhancement. Lanu

Soumik Rakshit 91 Jan 06, 2023
MVP Benchmark for Multi-View Partial Point Cloud Completion and Registration

MVP Benchmark: Multi-View Partial Point Clouds for Completion and Registration [NEWS] 2021-07-12 [NEW 🎉 ] The submission on Codalab starts! 2021-07-1

PL 93 Dec 21, 2022
Hcpy - Interface with Home Connect appliances in Python

Interface with Home Connect appliances in Python This is a very, very beta inter

Trammell Hudson 116 Dec 27, 2022
BiSeNet based on pytorch

BiSeNet BiSeNet based on pytorch 0.4.1 and python 3.6 Dataset Download CamVid dataset from Google Drive or Baidu Yun(6xw4). Pretrained model Download

367 Dec 26, 2022
68 keypoint annotations for COFW test data

68 keypoint annotations for COFW test data This repository contains manually annotated 68 keypoints for COFW test data (original annotation of CFOW da

31 Dec 06, 2022