Code release for Local Light Field Fusion at SIGGRAPH 2019

Overview





Local Light Field Fusion

Project | Video | Paper

Tensorflow implementation for novel view synthesis from sparse input images.

Local Light Field Fusion: Practical View Synthesis with Prescriptive Sampling Guidelines
Ben Mildenhall*1, Pratul Srinivasan*1, Rodrigo Ortiz-Cayon2, Nima Khademi Kalantari3, Ravi Ramamoorthi4, Ren Ng1, Abhishek Kar2
1UC Berkeley, 2Fyusion Inc, 3Texas A&M, 4UC San Diego
*denotes equal contribution
In SIGGRAPH 2019

Table of Contents

Installation TL;DR: Setup and render a demo scene

First install docker (instructions) and nvidia-docker (instructions).

Run this in the base directory to download a pretrained checkpoint, download a Docker image, and run code to generate MPIs and a rendered output video on an example input dataset:

bash download_data.sh
sudo docker pull bmild/tf_colmap
sudo docker tag bmild/tf_colmap tf_colmap
sudo nvidia-docker run --rm --volume /:/host --workdir /host$PWD tf_colmap bash demo.sh

A video like this should be output to data/testscene/outputs/test_vid.mp4:

If this works, then you are ready to start processing your own images! Run

sudo nvidia-docker run -it --rm --volume /:/host --workdir /host$PWD tf_colmap

to enter a shell inside the Docker container, and skip ahead to the section on using your own input images for view synthesis.

Full Installation Details

You can either install the prerequisites by hand or use our provided Dockerfile to make a docker image.

In either case, start by downloading this repository, then running the download_data.sh script to download a pretrained model and example input dataset:

bash download_data.sh

After installing dependencies, try running bash demo.sh from the base directory. (If using Docker, run this inside the container.) This should generate the video shown in the Installation TL;DR section at data/testscene/outputs/test_vid.mp4.

Manual installation

  • Install CUDA, Tensorflow, COLMAP, ffmpeg
  • Install the required Python packages:
pip install -r requirements.txt
  • Optional: run make in cuda_renderer/ directory.
  • Optional: run make in opengl_viewer/ directory. You may need to install GLFW or some other OpenGL libraries. For GLFW:
sudo apt-get install libglfw3-dev

Docker installation

To build the docker image on your own machine, which may take 15-30 mins:

sudo docker build -t tf_colmap:latest .

To download the image (~6GB) instead:

sudo docker pull bmild/tf_colmap
sudo docker tag bmild/tf_colmap tf_colmap

Afterwards, you can launch an interactive shell inside the container:

sudo nvidia-docker run -it --rm --volume /:/host --workdir /host$PWD tf_colmap

From this shell, all the code in the repo should work (except opengl_viewer).

To run any single command <command...> inside the docker container:

sudo nvidia-docker run --rm --volume /:/host --workdir /host$PWD tf_colmap <command...>

Using your own input images for view synthesis

Our method takes in a set of images of a static scene, promotes each image to a local layered representation (MPI), and blends local light fields rendered from these MPIs to render novel views. Please see our paper for more details.

As a rule of thumb, you should use images where the maximum disparity between views is no more than about 64 pixels (watch the closest thing to the camera and don't let it move more than ~1/8 the horizontal field of view between images). Our datasets usually consist of 20-30 images captured handheld in a rough grid pattern.

Quickstart: rendering a video from a zip file of your images

You can quickly render novel view frames and a .mp4 video from a zip file of your captured input images with the zip2mpis.sh bash script.

bash zip2mpis.sh <zipfile> <your_outdir> [--height HEIGHT]

height is the output height in pixels. We recommend using a height of 360 pixels for generating results quickly.

General step-by-step usage

Begin by creating a base scene directory (e.g., scenedir/), and copying your images into a subdirectory called images/ (e.g., scenedir/images).

1. Recover camera poses

This script calls COLMAP to run structure from motion to get 6-DoF camera poses and near/far depth bounds for the scene.

python imgs2poses.py <your_scenedir>

2. Generate MPIs

This script uses our pretrained Tensorflow graph (make sure it exists in checkpoints/papermodel) to generate MPIs from the posed images. They will be saved in <your_mpidir>, a directory will be created by the script.

python imgs2mpis.py <your_scenedir> <your_mpidir> \
    [--checkpoint CHECKPOINT] \
    [--factor FACTOR] [--width WIDTH] [--height HEIGHT] [--numplanes NUMPLANES] \
    [--disps] [--psvs] 

You should set at most one of factor, width, or height to determine the output MPI resolution (factor will scale the input image size down an integer factor, eg. 2, 4, 8, and height/width directly scale the input images to have the specified height or width). numplanes is 32 by default. checkpoint is set to the downloaded checkpoint by default.

Example usage:

python imgs2mpis.py scenedir scenedir/mpis --height 360

3. Render novel views

You can either generate a list of novel view camera poses and render out a video, or you can load the saved MPIs in our interactive OpenGL viewer.

Generate poses for new view path

First, generate a smooth new view path by calling

python imgs2renderpath.py <your_scenedir> <your_posefile> \
	[--x_axis] [--y_axis] [--z_axis] [--circle][--spiral]

<your_posefile> is the path of an output .txt file that will be created by the script, and will contain camera poses for the rendered novel views. The five optional arguments specify the trajectory of the camera. The xyz-axis options are straight lines along each camera axis respectively, "circle" is a circle in the camera plane, and "spiral" is a circle combined with movement along the z-axis.

Example usage:

python imgs2renderpath.py scenedir scenedir/spiral_path.txt --spiral

See llff/math/pose_math.py for the code that generates these path trajectories.

Render video with CUDA

You can build this in the cuda_renderer/ directory by calling make.

Uses CUDA to render out a video. Specify the height of the output video in pixels (-1 for same resolution as the MPIs), the factor for cropping the edges of the video (default is 1.0 for no cropping), and the compression quality (crf) for the saved MP4 file (default is 18, lossless is 0, reasonable is 12-28).

./cuda_renderer mpidir <your_posefile> <your_videofile> height crop crf

<your_videofile> is the path to the video file that will be written by FFMPEG.

Example usage:

./cuda_renderer scenedir/mpis scenedir/spiral_path.txt scenedir/spiral_render.mp4 -1 0.8 18

Render video with Tensorflow

Use Tensorflow to render out a video (~100x slower than CUDA renderer). Optionally, specify how many MPIs are blended for each rendered output (default is 5) and what factor to crop the edges of the video (default is 1.0 for no cropping).

python mpis2video.py <your_mpidir> <your_posefile> videofile [--use_N USE_N] [--crop_factor CROP_FACTOR]

Example usage:

python mpis2video.py scenedir/mpis scenedir/spiral_path.txt scenedir/spiral_render.mp4 --crop_factor 0.8

Interactive OpenGL viewer

Controls:

  • ESC to quit
  • Move mouse to translate in camera plane
  • Click and drag to rotate camera
  • Scroll to change focal length (zoom)
  • 'L' to animate circle render path

The OpenGL viewer cannot be used in the Docker container.

You need OpenGL installed, particularly GLFW:

sudo apt-get install libglfw3-dev

You can build the viewer in the opengl_viewer/ directory by calling make.

General usage (in opengl_viewer/ directory) is

./opengl_viewer mpidir

Using your own poses without running COLMAP

Here we explain the poses_bounds.npy file format. This file stores a numpy array of size Nx17 (where N is the number of input images). You can see how it is loaded in the three lines here. Each row of length 17 gets reshaped into a 3x5 pose matrix and 2 depth values that bound the closest and farthest scene content from that point of view.

The pose matrix is a 3x4 camera-to-world affine transform concatenated with a 3x1 column [image height, image width, focal length] to represent the intrinsics (we assume the principal point is centered and that the focal length is the same for both x and y).

The right-handed coordinate system of the the rotation (first 3x3 block in the camera-to-world transform) is as follows: from the point of view of the camera, the three axes are [down, right, backwards] which some people might consider to be [-y,x,z], where the camera is looking along -z. (The more conventional frame [x,y,z] is [right, up, backwards]. The COLMAP frame is [right, down, forwards] or [x,-y,-z].)

If you have a set of 3x4 cam-to-world poses for your images plus focal lengths and close/far depth bounds, the steps to recreate poses_bounds.npy are:

  1. Make sure your poses are in camera-to-world format, not world-to-camera.
  2. Make sure your rotation matrices have the columns in the correct coordinate frame [down, right, backwards].
  3. Concatenate each pose with the [height, width, focal] intrinsics vector to get a 3x5 matrix.
  4. Flatten each of those into 15 elements and concatenate the close and far depths.
  5. Stack the 17-d vectors to get a Nx17 matrix and use np.save to store it as poses_bounds.npy in the scene's base directory (same level containing the images/ directory).

This should explain the pose processing after COLMAP.

Troubleshooting

  • PyramidCU::GenerateFeatureList: an illegal memory access was encountered: Some machine configurations might run into problems running the script imgs2poses.py. A solution to that would be to set the environment variable CUDA_VISIBLE_DEVICES. If the issue persists, try uncommenting this line to stop COLMAP from using the GPU to extract image features.
  • Black screen: In the latest versions of MacOS, OpenGL initializes a context with a black screen until the window is dragged or resized. If you run into this problem, please drag the window to another position.
  • COLMAP fails: If you see "Could not register, trying another image", you will probably have to try changing COLMAP optimization parameters or capturing more images of your scene. See here.

Citation

If you find this useful for your research, please cite the following paper.

@article{mildenhall2019llff,
  title={Local Light Field Fusion: Practical View Synthesis with Prescriptive Sampling Guidelines},
  author={Ben Mildenhall and Pratul P. Srinivasan and Rodrigo Ortiz-Cayon and Nima Khademi Kalantari and Ravi Ramamoorthi and Ren Ng and Abhishek Kar},
  journal={ACM Transactions on Graphics (TOG)},
  year={2019},
}
Scheduling BilinearRewards

Scheduling_BilinearRewards Requirement Python 3 =3.5 Structure main.py This file includes the main function. For getting the results in Figure 1, ple

junghun.kim 0 Nov 25, 2021
Clairvoyance: a Unified, End-to-End AutoML Pipeline for Medical Time Series

Clairvoyance: A Pipeline Toolkit for Medical Time Series Authors: van der Schaar Lab This repository contains implementations of Clairvoyance: A Pipel

van_der_Schaar \LAB 89 Dec 07, 2022
Official PyTorch implementation for FastDPM, a fast sampling algorithm for diffusion probabilistic models

Official PyTorch implementation for "On Fast Sampling of Diffusion Probabilistic Models". FastDPM generation on CIFAR-10, CelebA, and LSUN datasets. S

Zhifeng Kong 68 Dec 26, 2022
Fast Learning of MNL Model From General Partial Rankings with Application to Network Formation Modeling

Fast-Partial-Ranking-MNL This repo provides a PyTorch implementation for the CopulaGNN models as described in the following paper: Fast Learning of MN

Xingjian Zhang 3 Aug 19, 2022
Machine Learning Time-Series Platform

cesium: Open-Source Platform for Time Series Inference Summary cesium is an open source library that allows users to: extract features from raw time s

632 Dec 26, 2022
Easy genetic ancestry predictions in Python

ezancestry Easily visualize your direct-to-consumer genetics next to 2500+ samples from the 1000 genomes project. Evaluate the performance of a custom

Kevin Arvai 38 Jan 02, 2023
Robust and Accurate Object Detection via Self-Knowledge Distillation

Robust and Accurate Object Detection via Self-Knowledge Distillation paper:https://arxiv.org/abs/2111.07239 Environments Python 3.7 Cuda 10.1 Prepare

Weipeng Xu 6 Jul 01, 2022
harmonic-percussive-residual separation algorithm wrapped as a VST3 plugin (iPlug2)

Harmonic-percussive-residual separation plug-in This work is a study on the plausibility of a sines-transients-noise decomposition inspired algorithm

Derp Learning 9 Sep 01, 2022
Sematic-Segmantation - Semantic Segmentation on MIT ADE20K dataset in PyTorch

Semantic Segmentation on MIT ADE20K dataset in PyTorch This is a PyTorch impleme

Berat Eren Terzioğlu 4 Mar 22, 2022
FANet - Real-time Semantic Segmentation with Fast Attention

FANet Real-time Semantic Segmentation with Fast Attention Ping Hu, Federico Perazzi, Fabian Caba Heilbron, Oliver Wang, Zhe Lin, Kate Saenko , Stan Sc

Ping Hu 42 Nov 30, 2022
Solutions and questions for AoC2021. Merry christmas!

Advent of Code 2021 Merry christmas! 🎄 🎅 To get solutions and approximate execution times for implementations, please execute the run.py script in t

Wilhelm Ågren 5 Dec 29, 2022
Diverse Image Generation via Self-Conditioned GANs

Diverse Image Generation via Self-Conditioned GANs Project | Paper Diverse Image Generation via Self-Conditioned GANs Steven Liu, Tongzhou Wang, David

Steven Liu 147 Dec 03, 2022
Official repo for QHack—the quantum machine learning hackathon

Note: This repository has been frozen while we consider the submissions for the QHack Open Hackathon. We hope you enjoyed the event! Welcome to QHack,

Xanadu 118 Jan 05, 2023
a practicable framework used in Deep Learning. So far UDL only provide DCFNet implementation for the ICCV paper (Dynamic Cross Feature Fusion for Remote Sensing Pansharpening)

UDL UDL is a practicable framework used in Deep Learning (computer vision). Benchmark codes, results and models are available in UDL, please contact @

Xiao Wu 11 Sep 30, 2022
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

146 Dec 11, 2022
Datasets, tools, and benchmarks for representation learning of code.

The CodeSearchNet challenge has been concluded We would like to thank all participants for their submissions and we hope that this challenge provided

GitHub 1.8k Dec 25, 2022
DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference

DeeBERT This is the code base for the paper DeeBERT: Dynamic Early Exiting for Accelerating BERT Inference. Code in this repository is also available

Castorini 132 Nov 14, 2022
Adversarial Learning for Semi-supervised Semantic Segmentation, BMVC 2018

Adversarial Learning for Semi-supervised Semantic Segmentation This repo is the pytorch implementation of the following paper: Adversarial Learning fo

Wayne Hung 464 Dec 19, 2022
YoloV3 Implemented in Tensorflow 2.0

YoloV3 Implemented in TensorFlow 2.0 This repo provides a clean implementation of YoloV3 in TensorFlow 2.0 using all the best practices. Key Features

Zihao Zhang 2.5k Dec 26, 2022
DataCLUE: 国内首个以数据为中心的AI测评(含模型分析报告)

DataCLUE: A Benchmark Suite for Data-centric NLP You can get the english version of README. 以数据为中心的AI测评(DataCLUE) 内容导引 章节 描述 简介 介绍以数据为中心的AI测评(DataCLUE

CLUE benchmark 135 Dec 22, 2022