PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation (TPAMI).

Overview

PFENet

This is the implementation of our paper PFENet: Prior Guided Feature Enrichment Network for Few-shot Segmentation that has been accepted to IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI).

Get Started

Environment

  • torch==1.4.0 (torch version >= 1.0.1.post2 should be okay to run this repo)
  • numpy==1.18.4
  • tensorboardX==1.8
  • cv2==4.2.0

Datasets and Data Preparation

Please download the following datasets:

  • PASCAL-5i is based on the PASCAL VOC 2012 and SBD where the val images should be excluded from the list of training samples.

  • COCO 2014.

This code reads data from .txt files where each line contains the paths for image and the correcponding label respectively. Image and label paths are seperated by a space. Example is as follows:

image_path_1 label_path_1
image_path_2 label_path_2
image_path_3 label_path_3
...
image_path_n label_path_n

Then update the train/val/test list paths in the config files.

[Update] We have uploaded the lists we use in our paper.

  • The train/val lists for COCO contain 82081 and 40137 images respectively. They are the default train/val splits of COCO.
  • The train/val lists for PASCAL5i contain 5953 and 1449 images respectively. The train list should be voc_sbd_merge_noduplicate.txt and the val list is the original val list of pascal voc (val.txt).
To get voc_sbd_merge_noduplicate.txt:
  • We first merge the original VOC (voc_original_train.txt) and SBD (sbd_data.txt) training data.
  • [Important] sbd_data.txt does not overlap with the PASCALVOC 2012 validation data.
  • The merged list (voc_sbd_merge.txt) is then processed by the script (duplicate_removal.py) to remove the duplicate images and labels.

Run Demo / Test with Pretrained Models

  • Please download the pretrained models.

  • We provide 8 pre-trained models: 4 ResNet-50 based models for PASCAL-5i and 4 VGG-16 based models for COCO.

  • Update the config file by speficifying the target split and path (weights) for loading the checkpoint.

  • Execute mkdir initmodel at the root directory.

  • Download the ImageNet pretrained backbones and put them into the initmodel directory.

  • Then execute the command:

    sh test.sh {*dataset*} {*model_config*}

Example: Test PFENet with ResNet50 on the split 0 of PASCAL-5i:

sh test.sh pascal split0_resnet50

Train

Execute this command at the root directory:

sh train.sh {*dataset*} {*model_config*}

Related Repositories

This project is built upon a very early version of SemSeg: https://github.com/hszhao/semseg.

Other projects in few-shot segmentation:

Many thanks to their greak work!

Citation

If you find this project useful, please consider citing:

@article{tian2020pfenet,
  title={Prior Guided Feature Enrichment Network for Few-Shot Segmentation},
  author={Tian, Zhuotao and Zhao, Hengshuang and Shu, Michelle and Yang, Zhicheng and Li, Ruiyu and Jia, Jiaya},
  journal={TPAMI},
  year={2020}
}
Owner
DV Lab
Deep Vision Lab
DV Lab
Async API for controlling Hue Lights

Hue API Async API for controlling Hue Lights Documentation: hue-api.nirantak.com Source: github.com/nirantak/hue-api Installation This is an async cli

Nirantak Raghav 4 Nov 16, 2022
This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking".

SCT This is the official code for the paper "Tracker Meets Night: A Transformer Enhancer for UAV Tracking" The spatial-channel Transformer (SCT) enhan

Intelligent Vision for Robotics in Complex Environment 27 Nov 23, 2022
Code release to accompany paper "Geometry-Aware Gradient Algorithms for Neural Architecture Search."

Geometry-Aware Gradient Algorithms for Neural Architecture Search This repository contains the code required to run the experiments for the DARTS sear

18 May 27, 2022
General purpose Slater-Koster tight-binding code for electronic structure calculations

tight-binder Introduction General purpose tight-binding code for electronic structure calculations based on the Slater-Koster approximation. The code

9 Dec 15, 2022
Source code for CAST - Crisis Domain Adaptation Using Sequence-to-sequence Transformers (Accepted to ISCRAM 2021, CorePaper).

Source code for CAST: Crisis Domain Adaptation UsingSequence-to-sequenceTransformers (Paper, BibTeX, Accepted to ISCRAM 2021, CorePaper) Quick start D

Congcong Wang 0 Jul 14, 2021
Collect some papers about transformer with vision. Awesome Transformer with Computer Vision (CV)

Awesome Visual-Transformer Collect some Transformer with Computer-Vision (CV) papers. If you find some overlooked papers, please open issues or pull r

dkliang 2.8k Jan 08, 2023
Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

CoProtector Code for the prototype tool in our paper "CoProtector: Protect Open-Source Code against Unauthorized Training Usage with Data Poisoning".

Zhensu Sun 1 Oct 26, 2021
This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization

Spherical Gaussian Optimization This is code to fit per-pixel environment map with spherical Gaussian lobes, using LBFGS optimization. This code has b

41 Dec 14, 2022
Pneumonia Detection using machine learning - with PyTorch

Pneumonia Detection Pneumonia Detection using machine learning. Training was done in colab: DEMO: Result (Confusion Matrix): Data I uploaded my datase

Wilhelm Berghammer 12 Jul 07, 2022
Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training Consistency Shift (ICCV 2021)

Π-NAS This repository provides the evaluation code of our submitted paper: Pi-NAS: Improving Neural Architecture Search by Reducing Supernet Training

Jiqi Zhang 18 Aug 18, 2022
A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning

A modular, open and non-proprietary toolkit for core robotic functionalities by harnessing deep learning Website • About • Installation • Using OpenDR

OpenDR 304 Dec 28, 2022
Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction

Unsupervised Feature Loss (UFLoss) for High Fidelity Deep learning (DL)-based reconstruction Official github repository for the paper High Fidelity De

28 Dec 16, 2022
Elegy is a framework-agnostic Trainer interface for the Jax ecosystem.

Elegy Elegy is a framework-agnostic Trainer interface for the Jax ecosystem. Main Features Easy-to-use: Elegy provides a Keras-like high-level API tha

435 Dec 30, 2022
A TensorFlow implementation of Neural Program Synthesis from Diverse Demonstration Videos

ViZDoom http://vizdoom.cs.put.edu.pl ViZDoom allows developing AI bots that play Doom using only the visual information (the screen buffer). It is pri

Hyeonwoo Noh 1 Aug 19, 2020
A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval

CLIP4CMR A Comprehensive Empirical Study of Vision-Language Pre-trained Model for Supervised Cross-Modal Retrieval The original data and pre-calculate

24 Dec 26, 2022
QueryDet: Cascaded Sparse Query for Accelerating High-Resolution SmallObject Detection

QueryDet-PyTorch This repository is the official implementation of our paper: QueryDet: Cascaded Sparse Query for Accelerating High-Resolution Small O

Chenhongyi Yang 276 Dec 31, 2022
TorchFlare is a simple, beginner-friendly, and easy-to-use PyTorch Framework train your models effortlessly.

TorchFlare TorchFlare is a simple, beginner-friendly and an easy-to-use PyTorch Framework train your models without much effort. It provides an almost

Atharva Phatak 85 Dec 26, 2022
Deep motion generator collections

GenMotion GenMotion (/gen’motion/) is a Python library for making skeletal animations. It enables easy dataset loading and experiment sharing for synt

23 May 24, 2022
optimization routines for hyperparameter tuning

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

Marc Claesen 398 Nov 09, 2022
PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM)

Neuro-Symbolic Sudoku Solver PyTorch implementation for the Neuro-Symbolic Sudoku Solver leveraging the power of Neural Logic Machines (NLM). Please n

Ashutosh Hathidara 60 Dec 10, 2022