MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts (ICLR 2022)

Overview

MetaShift: A Dataset of Datasets for Evaluating Distribution Shifts and Training Conflicts

Website shields.io Documentation Status MIT license OpenReview Python 3.6 Pytorch Made withJupyter GitHub stars

This repo provides the PyTorch source code of our paper: MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts (ICLR 2022). [PDF] [ICLR 2022 Video] [Slides] [HuggingFace]

Project website: https://MetaShift.readthedocs.io/

@InProceedings{liang2022metashift,
  title={MetaShift: A Dataset of Datasets for Evaluating Contextual Distribution Shifts and Training Conflicts},
  author={Weixin Liang and James Zou},
  booktitle={International Conference on Learning Representations},
  year={2022},
  url={https://openreview.net/forum?id=MTex8qKavoS}
}

This repo provides the scripts for generating the proposed MetaShift, which offers a resource of 1000s of distribution shifts.

Abstract

Understanding the performance of machine learning model across diverse data distributions is critically important for reliable applications. Motivated by this, there is a growing focus on curating benchmark datasets that capture distribution shifts. While valuable, the existing benchmarks are limited in that many of them only contain a small number of shifts and they lack systematic annotation about what is different across different shifts. We present MetaShift---a collection of 12,868 sets of natural images across 410 classes---to address this challenge. We leverage the natural heterogeneity of Visual Genome and its annotations to construct MetaShift. The key construction idea is to cluster images using its metadata, which provides context for each image (e.g. cats with cars or cats in bathroom) that represent distinct data distributions. MetaShift has two important benefits: first it contains orders of magnitude more natural data shifts than previously available. Second, it provides explicit explanations of what is unique about each of its data sets and a distance score that measures the amount of distribution shift between any two of its data sets. We demonstrate the utility of MetaShift in benchmarking several recent proposals for training models to be robust to data shifts. We find that the simple empirical risk minimization performs the best when shifts are moderate and no method had a systematic advantage for large shifts. We also show how MetaShift can help to visualize conflicts between data subsets during model training.

Figure 1: Example Cat vs. Dog Images from MetaShift. For each class, MetaShift provides many subsets of data, each of which corresponds different contexts (the context is stated in parenthesis).

Figure 2: Infographics of MetaShift.

Figure 3: Meta-graph: visualizing the diverse data distributions within the “cat” class.

Repo Structure Overview

.
├── README.md
├── dataset/
    ├── meta_data/ 
    ├── generate_full_MetaShift.py
    ├── ...         
├── experiments/
    ├── subpopulation_shift/              
        ├── main_generalization.py
        ├── ...

The dataset folder provides the script for generating MetaShift. The experiments folder provides the expriments on MetaShift in the paper.

Dependencies

  • Python 3.6.13 (e.g. conda create -n venv python=3.6.13)
  • PyTorch Version: 1.4.0
  • Torchvision Version: 0.5.0

Download Visual Genome

We leveraged the natural heterogeneity of Visual Genome and its annotations to construct MetaShift. Download the pre-processed and cleaned version of Visual Genome by GQA.

  • Download image files (~20GB) and scene graph annotations:
wget -c https://nlp.stanford.edu/data/gqa/images.zip
unzip images.zip -d allImages
wget -c https://nlp.stanford.edu/data/gqa/sceneGraphs.zip  
unzip sceneGraphs.zip -d sceneGraphs
  • After this step, the base dataset file structure should look like this:
/data/GQA/
    allImages/
        images/
            <ID>.jpg
    sceneGraphs/
        train_sceneGraphs.json
        val_sceneGraphs.json
  • Specify local path of Visual Genome Extract the files, and then specify the folder path (e.g., IMAGE_DATA_FOLDER=/data/GQA/allImages/images/) in Constants.py.

Generate the Full MetaShift Dataset (subsets defined by contextual objects)

Understanding dataset/meta_data/full-candidate-subsets.pkl

The metadata file dataset/meta_data/full-candidate-subsets.pkl is the most important piece of metadata of MetaShift, which provides the full subset information of MetaShift. To facilitate understanding, we have provided a notebook dataset/understanding_full-candidate-subsets-pkl.ipynb to show how to extract information from it.

Basically, the pickle file stores a collections.defaultdict(set) object, which contains 17,938 keys. Each key is a string of the subset name like dog(frisbee), and the corresponding value is a list of the IDs of the images that belong to this subset. The image IDs can be used to retrieve the image files from the Visual Genome dataset that you just downloaded. In our current version, 13,543 out of 17,938 subsets have more than 25 valid images. In addition, dataset/meta_data/full-candidate-subsets.pkl is drived from the scene graph annotation, so check it out if your project need additional information about each image.

Generate Full MetaShift

Since the total number of all subsets is very large, all of the following scripts only generate a subset of MetaShift. As specified in dataset/Constants.py, we only generate MetaShift for the following classes (subjects). You can add any additional classes (subjects) into the list. See dataset/meta_data/class_hierarchy.json for the full object vocabulary and its hierarchy. SELECTED_CLASSES = [ 'cat', 'dog', 'bus', 'truck', 'elephant', 'horse', 'bowl', 'cup', ]

In addition, to save storage, all copied images are symbolic links. You can set use_symlink=True in the code to perform actual file copying. If you really want to generate the full MetaShift, then set ONLY_SELECTED_CLASSES = True in dataset/Constants.py.

cd dataset/
python generate_full_MetaShift.py

The following files will be generated by executing the script. Modify the global varaible SUBPOPULATION_SHIFT_DATASET_FOLDER to change the destination folder.

/data/MetaShift/MetaDataset-full
├── cat/
    ├── cat(keyboard)/
    ├── cat(sink)/ 
    ├── ... 
├── dog/
    ├── dog(surfboard) 
    ├── dog(boat)/ 
    ├── ...
├── bus/ 
├── ...

Beyond the generated MetaShift dataset, the scipt also genervates the meta-graphs for each class in dataset/meta-graphs.

.
├── README.md
├── dataset/
    ├── generate_full_MetaShift.py
    ├── meta-graphs/             (generated meta-graph visualization) 
        ├──  cat_graph.jpg
        ├──  dog_graph.jpg
        ├──  ...
    ├── ...         

Bonus: Generate the MetaShift-Attributes Dataset (subsets defined by subject attributes)

Figure: Example Subsets based on object attribute contexts. the attribute is stated in parenthesis). MetaShift covers attributes including activity (e.g., sitting, jumping), color (e.g., orange, white), material (e.g., wooden, metallic), shape (e.g., round, square), and so on.

Understanding dataset/attributes_MetaShift/attributes-candidate-subsets.pkl

dataset/attributes_MetaShift/attributes-candidate-subsets.pkl stores the metadata for MetaShift-Attributes, where each subset is defined by the attribute of the subject, e.g. cat(orange), cat(white), dog(sitting), dog(jumping).

attributes-candidate-subsets.pkl has the same data format as full-candidate-subsets.pkl. To facilitate understanding, we have provided a notebook dataset/attributes_MetaShift/understanding_attributes-candidate-subsets-pkl.ipynb to show how to extract information from it.

Basically, the pickle file stores a collections.defaultdict(set) object, which contains 4,962 keys. Each key is a string of the subset name like cat(orange), and the corresponding value is a list of the IDs of the images that belong to this subset. The image IDs can be used to retrieve the image files from the Visual Genome dataset that you just downloaded.

Understanding dataset/attributes_MetaShift/structured-attributes-candidate-subsets.pkl

dataset/attributes_MetaShift/structured-attributes-candidate-subsets.pkl is very similar to dataset/attributes_MetaShift/attributes-candidate-subsets.pkl, but stores the metadata in a more structured way. The pickle file stores a 3-level nested dictionary, with the following structure:

.
├── key: 'color'
    ├── key: 'cat'              
        ├── key: 'orange'
            ├── value: a list of image IDs
├── key: 'activity'
    ├── key: 'dog'              
        ├── key: 'sitting'
            ├── value: a list of image IDs
        ├── ...

See the full attrribute ontology in ATTRIBUTE_CONTEXT_ONTOLOGY in dataset/Constants.py

ATTRIBUTE_CONTEXT_ONTOLOGY = {
 'darkness': ['dark', 'bright'],
 'dryness': ['wet', 'dry'],
 'colorful': ['colorful', 'shiny'],
 'leaf': ['leafy', 'bare'],
 'emotion': ['happy', 'calm'],
 'sports': ['baseball', 'tennis'],
 'flatness': ['flat', 'curved'],
 'lightness': ['light', 'heavy'],
 'gender': ['male', 'female'],
 'width': ['wide', 'narrow'],
 'depth': ['deep', 'shallow'],
 'hardness': ['hard', 'soft'],
 'cleanliness': ['clean', 'dirty'],
 'switch': ['on', 'off'],
 'thickness': ['thin', 'thick'],
 'openness': ['open', 'closed'],
 'height': ['tall', 'short'],
 'length': ['long', 'short'],
 'fullness': ['full', 'empty'],
 'age': ['young', 'old'],
 'size': ['large', 'small'],
 'pattern': ['checkered', 'striped', 'dress', 'dotted'],
 'shape': ['round', 'rectangular', 'triangular', 'square'],
 'activity': ['waiting', 'staring', 'drinking', 'playing', 'eating', 'cooking', 'resting', 
              'sleeping', 'posing', 'talking', 'looking down', 'looking up', 'driving', 
              'reading', 'brushing teeth', 'flying', 'surfing', 'skiing', 'hanging'],
 'pose': ['walking', 'standing', 'lying', 'sitting', 'running', 'jumping', 'crouching', 
            'bending', 'smiling', 'grazing'],
 'material': ['wood', 'plastic', 'metal', 'glass', 'leather', 'leather', 'porcelain', 
            'concrete', 'paper', 'stone', 'brick'],
 'color': ['white', 'red', 'black', 'green', 'silver', 'gold', 'khaki', 'gray', 
            'dark', 'pink', 'dark blue', 'dark brown',
            'blue', 'yellow', 'tan', 'brown', 'orange', 'purple', 'beige', 'blond', 
            'brunette', 'maroon', 'light blue', 'light brown']
}

Section 4.2: Evaluating Subpopulation Shifts

Run the python script dataset/subpopulation_shift_cat_dog_indoor_outdoor.py to reproduce the MetaShift subpopulation shift dataset (based on Visual Genome images) in the paper.

cd dataset/
python subpopulation_shift_cat_dog_indoor_outdoor.py

The python script generates a “Cat vs. Dog” dataset, where the general contexts “indoor/outdoor” have a natural spurious correlation with the class labels.

The following files will be generated by executing the python script dataset/subpopulation_shift_cat_dog_indoor_outdoor.py.

Output files (mixed version: for reproducing experiments)

/data/MetaShift/MetaShift-subpopulation-shift
├── imageID_to_group.pkl
├── train/
    ├── cat/             (more cat(indoor) images than cat(outdoor))
    ├── dog/             (more dog(outdoor) images than cat(indoor)) 
├── val_out_of_domain/
    ├── cat/             (cat(indoor):cat(outdoor)=1:1)
    ├── dog/             (dog(indoor):dog(outdoor)=1:1) 

where imageID_to_group.pkl is a dictionary with 4 keys : 'cat(outdoor)', 'cat(outdoor)', 'dog(outdoor)', 'dog(outdoor)'. The corresponding value of each key is the list of the names of the images that belongs to that subset. Modify the global varaible SUBPOPULATION_SHIFT_DATASET_FOLDER to change the destination folder. You can tune the NUM_MINORITY_IMG to control the amount of subpopulation shift.

Output files (unmixed version, for other potential uses)

To facilitate other potential uses, we also outputs an unmixed version, where we output the 'cat(outdoor)', 'cat(outdoor)', 'dog(outdoor)', 'dog(outdoor)' into 4 seperate folders. Modify the global varaible CUSTOM_SPLIT_DATASET_FOLDER to change the destination folder.

/data/MetaShift/MetaShift-Cat-Dog-indoor-outdoor
├── imageID_to_group.pkl
├── train/
    ├── cat/             (all cat(indoor) images)
        ├── cat(indoor)/
    ├── dog/             (all dog(outdoor) images) 
        ├── dog(outdoor)/
├── test/
    ├── cat/             (all cat(outdoor) images)
        ├── cat(outdoor)/
    ├── dog/             (all dog(indoor) images) 
        ├── dog(indoor)/

Appendix D: Constructing MetaShift from COCO Dataset

The notebook dataset/extend_to_COCO/coco_MetaShift.ipynb reproduces the COCO subpopulation shift dataset in paper Appendix D. Executing the notebook would construct a “Cat vs. Dog” task based on COCO images, where the “indoor/outdoor” contexts are spuriously correlated with the class labels.

Install COCO Dependencies

Install pycocotools (for evaluation on COCO):

conda install cython scipy
pip install -U 'git+https://github.com/cocodataset/cocoapi.git#subdirectory=PythonAPI'

COCO Data preparation

2017 Train/Val annotations [241MB]

2017 Train images [118K/18GB]

Download and extract COCO 2017 train and val images with annotations from http://cocodataset.org. We expect the directory structure to be the following:

/home/ubuntu/data/coco/
  annotations/  # annotation json files
  train2017/    # train images
  val2017/      # val images

Modify the global varaible IMAGE_DATA_FOLDER to change the COCO image folder.

Output files (mixed version: for reproducing experiments)

The following files will be generated by executing the notebook.

/data/MetaShift/COCO-Cat-Dog-indoor-outdoor
├── imageID_to_group.pkl
├── train/
    ├── cat/
    ├── dog/ 
├── val_out_of_domain/
    ├── cat/
    ├── dog/ 

where imageID_to_group.pkl is a dictionary with 4 keys : 'cat(outdoor)', 'cat(outdoor)', 'dog(outdoor)', 'dog(outdoor)'. The corresponding value of each key is the list of the names of the images that belongs to that subset. Modify the global varaible CUSTOM_SPLIT_DATASET_FOLDER to change the destination folder.

Section 4.1: Evaluating Domain Generalization

Run the python script dataset/domain_generalization_cat_dog.py to reproduce the MetaShift domain generalization dataset (based on Visual Genome images) in the paper.

cd dataset/
python domain_generalization_cat_dog.py

Output files (cat vs. dog, unmixed version)

The following files will be generated by executing the python script dataset/domain_generalization_cat_dog.py. Modify the global varaible CUSTOM_SPLIT_DATASET_FOLDER to change the COCO image folder.

/data/MetaShift/Domain-Generalization-Cat-Dog
├── train/
    ├── cat/
        ├── cat(sofa)/              (The cat training data is always cat(\emph{sofa + bed}) ) 
        ├── cat(bed)/               (The cat training data is always cat(\emph{sofa + bed}) )
    ├── dog/
        ├── dog(cabinet)/           (Experiment 1: the dog training data is dog(\emph{cabinet + bed}))
        ├── dog(bed)/               (Experiment 1: the dog training data is dog(\emph{cabinet + bed}))

        ├── dog(bag)/               (Experiment 2: the dog training data is dog(\emph{bag + box}))
        ├── dog(box)/               (Experiment 2: the dog training data is dog(\emph{bag + box}))

        ├── dog(bench)/             (Experiment 3: the dog training data is dog(\emph{bench + bike}))
        ├── dog(bike)/              (Experiment 3: the dog training data is dog(\emph{bench + bike}))

        ├── dog(boat)/              (Experiment 4: the dog training data is dog(\emph{boat + surfboard}))
        ├── dog(surfboard)/         (Experiment 4: the dog training data is dog(\emph{boat + surfboard}))

├── test/
    ├── dog/
        ├── dog(shelf)/             (The test set we used in the paper)
        ├── dog(sofa)/             
        ├── dog(grass)/             
        ├── dog(vehicle)/             
        ├── dog(cap)/                         
    ├── cat/
        ├── cat(shelf)/
        ├── cat(grass)/
        ├── cat(sink)/
        ├── cat(computer)/
        ├── cat(box)/
        ├── cat(book)/

Code for Distribution Shift Experiments

The python script experiments/distribution_shift/main_generalization.py is the entry point for running the distribution shift experiemnts for Section 4.2 (Evaluating Subpopulation Shifts) and Appendix D (Constructing MetaShift from COCO Dataset), and Section 4.1 (Evaluating Domain Generalization). As a running example, the default value for --data in argparse is /data/MetaShift/MetaShift-subpopulation-shift (i.e., for Section 4.2).

clear && CUDA_VISIBLE_DEVICES=3 python main_generalization.py --num-domains 2 --algorithm ERM 
clear && CUDA_VISIBLE_DEVICES=4 python main_generalization.py --num-domains 2 --algorithm GroupDRO 
clear && CUDA_VISIBLE_DEVICES=5 python main_generalization.py --num-domains 2 --algorithm IRM 
clear && CUDA_VISIBLE_DEVICES=6 python main_generalization.py --num-domains 2 --algorithm CORAL 
clear && CUDA_VISIBLE_DEVICES=7 python main_generalization.py --num-domains 2 --algorithm CDANN 

Our code is based on the DomainBed, as introduced in In Search of Lost Domain Generalization. The codebase also provides many additional algorithms. Many thanks to the authors and developers!

Owner
Ph.D. Student in Computer Science at Stanford University
AWS provides a Python SDK, "Boto3" ,which can be used to access the AWS-account from the local.

Boto3 - The AWS SDK for Python Boto3 is the Amazon Web Services (AWS) Software Development Kit (SDK) for Python, which allows Python developers to wri

Shreyas Srivastava 1 Oct 25, 2021
Reinforcement Learning Theory Book (rus)

Reinforcement Learning Theory Book (rus)

qbrick 206 Nov 27, 2022
Tackling data scarcity in Speech Translation using zero-shot multilingual Machine Translation techniques

Tackling data scarcity in Speech Translation using zero-shot multilingual Machine Translation techniques This repository is derived from the NMTGMinor

Tu Anh Dinh 1 Sep 07, 2022
Official Pytorch implementation of 'GOCor: Bringing Globally Optimized Correspondence Volumes into Your Neural Network' (NeurIPS 2020)

Official implementation of GOCor This is the official implementation of our paper : GOCor: Bringing Globally Optimized Correspondence Volumes into You

Prune Truong 71 Nov 18, 2022
PyTorch code accompanying the paper "Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning" (NeurIPS 2021).

HIGL This is a PyTorch implementation for our paper: Landmark-Guided Subgoal Generation in Hierarchical Reinforcement Learning (NeurIPS 2021). Our cod

Junsu Kim 20 Dec 14, 2022
3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans.

3DMV 3DMV jointly combines RGB color and geometric information to perform 3D semantic segmentation of RGB-D scans. This work is based on our ECCV'18 p

Владислав Молодцов 0 Feb 06, 2022
A TikTok-like recommender system for GitHub repositories based on Gorse

GitRec GitRec is the missing recommender system for GitHub repositories based on Gorse. Architecture The trending crawler crawls trending repositories

337 Jan 04, 2023
SIMULEVAL A General Evaluation Toolkit for Simultaneous Translation

SimulEval SimulEval is a general evaluation framework for simultaneous translation on text and speech. Requirement python = 3.7.0 Installation git cl

Facebook Research 48 Dec 28, 2022
Creating Multi Task Models With Keras

Creating Multi Task Models With Keras About The Project! I used the keras and Tensorflow Library, To build a Deep Learning Neural Network to Creating

Srajan Chourasia 4 Nov 28, 2022
KoCLIP: Korean port of OpenAI CLIP, in Flax

KoCLIP This repository contains code for KoCLIP, a Korean port of OpenAI's CLIP. This project was conducted as part of Hugging Face's Flax/JAX communi

Jake Tae 100 Jan 02, 2023
Homepage of paper: Paint Transformer: Feed Forward Neural Painting with Stroke Prediction, ICCV 2021.

Paint Transformer: Feed Forward Neural Painting with Stroke Prediction [Paper] [PaddlePaddle Implementation] Homepage of paper: Paint Transformer: Fee

442 Dec 16, 2022
The Pytorch implementation for "Video-Text Pre-training with Learned Regions"

Region_Learner The Pytorch implementation for "Video-Text Pre-training with Learned Regions" (arxiv) We are still cleaning up the code further and pre

Rui Yan 0 Mar 20, 2022
This program automatically runs Python code copied in clipboard

CopyRun This program runs Python code which is copied in clipboard WARNING!! USE AT YOUR OWN RISK! NO GUARANTIES IF ANYTHING GETS BROKEN. DO NOT COPY

vertinski 4 Sep 10, 2021
Understanding the Generalization Benefit of Model Invariance from a Data Perspective

Understanding the Generalization Benefit of Model Invariance from a Data Perspective This is the code for our NeurIPS2021 paper "Understanding the Gen

1 Jan 15, 2022
Source Code for AAAI 2022 paper "Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching"

Graph Convolutional Networks with Dual Message Passing for Subgraph Isomorphism Counting and Matching This repository is an official implementation of

HKUST-KnowComp 13 Sep 08, 2022
Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion"

DSPoint Official pytorch implementation of "DSPoint: Dual-scale Point Cloud Recognition with High-frequency Fusion" Coming soon, as soon as I finish a

Ziyao Zeng 14 Feb 26, 2022
Yolact-keras实例分割模型在keras当中的实现

Yolact-keras实例分割模型在keras当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料 Reference 性能情况 训练数

Bubbliiiing 11 Dec 26, 2022
A few stylization coreML models that I've trained with CreateML

CoreML-StyleTransfer A few stylization coreML models that I've trained with CreateML You can open and use the .mlmodel files in the "models" folder in

Doron Adler 8 Aug 18, 2022
Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study.

APR The repo for the paper Improving Query Representations for DenseRetrieval with Pseudo Relevance Feedback:A Reproducibility Study. Environment setu

ielab 8 Nov 26, 2022
Augmentation for Single-Image-Super-Resolution

SRAugmentation Augmentation for Single-Image-Super-Resolution Implimentation CutBlur Cutout CutMix Cutup CutMixup Blend RGBPermutation Identity OneOf

Yubo 6 Jun 27, 2022