交互式标注软件,暂定名 iann

Related tags

Deep Learningiann
Overview

iann

交互式标注软件,暂定名iann。

安装

按照官网介绍安装paddle。 安装其他依赖

pip install -r requirements.txt

运行

git clone https://github.com/PaddleCV-SIG/iann/
cd iann
python iann/__main__.py

TODO

  • 整理创建网络/推理部分代码,简化main分支下代码
  • 不同标签允许不同模型
  • APPNAME全局变量
  • 训练代码整理和训练配置的抽出(初步实现)
  • 重新审查修改按键图标,确保图标完整清晰
  • 界面配色以paddle蓝色为主,同时做一个ico窗口图标
  • 标签可修改?

include iann/weight/sky_resnet/* include iann/weight/aorta/* include iann/weight/human_resnet/*

Comments
  • fix(add bbox) : the output does not give correct bbox info

    fix(add bbox) : the output does not give correct bbox info

    1. the output for coco dataset type does not generate correct output info

    before (note bbox is [0, 0, 0, 0]): before fix

    fixed: fix

    1. also generates correct bbox annotation QGraphic widget which is bettern than default "boundingRect":

    add bbox

    opened by yiakwy 10
  • 模型输入point的组织形式

    模型输入point的组织形式

    请问作者,对于模型前向传播时,输入的point参数的各个维度代表的含义可以稍微解释下吗?

    比如,我点了一个点,输入的point的形状是:(2, 2, 3) , 我现在知道了 最后一个维度中包含的是 (y, x, index), 也知道 第二个维度的值是 正样本点的数量的2倍,但是我没看懂为啥第二个维度的值要是2,另外一部分存的是啥啊?(看结果,y值没变,x值变化) 第一维,嘿嘿也没看懂? 为啥是2,这里的含义是什么呢?

    感谢您的精彩工作!

    solved 
    opened by zhijiejia 9
  • release/0.4.0 当前存在的部分BUG

    release/0.4.0 当前存在的部分BUG

    [SELF]

    • [x] 切换模型参数后,必须切换图像才能换过来
    • [x] 多边形有孔洞可能越界
    • [x] 偶见打开后界面混乱,同时加载最近模型也错乱(目前猜测是调试崩溃后打乱了setting的保存)
    • [x] #67
    • [x] #66
    • [x] 单独打开多张图片,快捷键S和F切换的第一次有问题
    • [x] 宫格完成后mask和polygon有偏移
    • [x] 宫格模式下某些shp保存无法在arcgis中显示(投影问题需要解决)
    • [x] 宫格模式多标签问题(全部导出为一个标签了)
    • [ ] #70
    • [ ] #68
    • [x] 增加显示图像的地理信息
    • [x] 打开图像报错(存在.xxx.jpg类似格式的文件)
    • [x] GPU/TensorRT加载问题(框架版本问题)
    • [x] 保留最大联通块推理,生成的多边形仍包含所有块
    • [x] 多次关闭和选择图像后,地理信息被清除
    • [x] #71
    • [x] 导出shp多边形未闭合
    • [x] 导出tif波段数不对(为原始图像波段数)
    • [x] 【讨论】导出图像名的大小写与原始图像名不一致(Linux大小写敏感会不会在训练时匹配不上文件 @linhandev)
    • [x] jpg等医疗图像调整窗宽等闪退
    • [x] 【完善】英语翻译支持
    • [x] 【完善】pip打包
    • [ ] 【完善】exe打包
    • [x] 【完善】md文档

    [QA]

    • [x] #74
    • [x] #75
    • [x] #76
    • [x] #77
    • [x] #78
    • [x] #79
    • [x] #80
    • [x] #81
    bug solved 
    opened by geoyee 6
  • 直接打开图像报错

    直接打开图像报错

    直接打开一张没有标签的图像报错:

      File "e:\PdCVSIG\github\EISeg\eiseg\app.py", line 1092, in loadLabel
        imgId = self.coco.imgNameToId.get(osp.basename(imgPath), None)
    AttributeError: 'NoneType' object has no attribute 'imgNameToId'
    
    bug 
    opened by geoyee 6
  • 服务器Linux下无法选择文件夹

    服务器Linux下无法选择文件夹

    点加载网络参数的时候,会弹出一个窗口让我选择模型参数,但是我点哪个文件夹都没反应,这个是出窗口的时候的信息。 image目前看起来可能是QT的问题,有下列参考:

    bug good first issue solved 
    opened by geoyee 5
  • 加载模型后闪退

    加载模型后闪退

    D:\anaconda3\lib\site-packages\win32\lib\pywintypes.py:2: DeprecationWarning: the imp module is deprecated in favour of importlib; see the module's documentation for alternative uses import imp, sys, os qt.qpa.fonts: Unable to enumerate family ' "Droid Sans Mono Dotted for Powerline" ' qt.qpa.fonts: Unable to enumerate family ' "Droid Sans Mono Slashed for Powerline" ' qt.qpa.fonts: Unable to enumerate family ' "Roboto Mono Medium for Powerline" ' qt.qpa.fonts: Unable to enumerate family ' "Ubuntu Mono derivative Powerline" ' OMP: Error #15: Initializing libiomp5md.dll, but found libiomp5md.dll already initialized. OMP: Hint This means that multiple copies of the OpenMP runtime have been linked into the program. That is dangerous, since it can degrade performance or cause incorrect results. The best thing to do is to ensure that only a single OpenMP runtime is linked into the process, e.g. by avoiding static linking of the OpenMP runtime in any library. As an unsafe, unsupported, undocumented workaround you can set the environment variable KMP_DUPLICATE_LIB_OK=TRUE to allow the program to continue to execute, but that may cause crashes or silently produce incorrect results. For more information, please see http://www.intel.com/software/products/support/. QObject::~QObject: Timers cannot be stopped from another thread

    bug 
    opened by YQisme 4
  • Add sliding bar to adjust window width and window center

    Add sliding bar to adjust window width and window center

    Add sliding bar to adjust window width and window center.When reading medical images, the window width and window center are adaptive according to the modes

    opened by richarddddd198 3
  • Train module problem: ritm_train.py import error.

    Train module problem: ritm_train.py import error.

    THX for sharing! Import error was found in ritm_train.py from model.model import ( get_hrnet_model, DistMapsHRNetModel, get_deeplab_model, get_shufflenet_model, ) these modules were not exist in model.py, even in this project. so where can i find these modules, please?

    opened by mengmeng716 3
  • plugin\remotesensing\raster.py  line123 遥感图像显示为黑色

    plugin\remotesensing\raster.py line123 遥感图像显示为黑色

    bug描述 请大致描述出错的现象,在什么情况下或操作过程中遇到,在上述条件下是否总是出现等。 float32型tif(0~1)会将数据全部替换为0,显示图像为黑色。

    解决方法 rgb.append(np.uint16(self.src_data.read(b))) --> rgb.append(self.src_data.read(b))

    bug solved 
    opened by yangweiguang213 2
  • 宫格功能时,AttributeError: 'NoneType' object has no attribute 'getGrid'报错。

    宫格功能时,AttributeError: 'NoneType' object has no attribute 'getGrid'报错。

    bug描述 在使用宫格功能时,在点击”保存每个宫格的标签“后,自动弹出文件夹,点击相应文件夹(有要求吗?)后,再次点击下一个要标注的宫格时,程序自动退出。且出现如下报错: AttributeError: 'NoneType' object has no attribute 'getGrid'

    截屏 image

    运行环境(请尽量填写,这可以帮助我们定位问题):

    • 系统: Windows
    • 安装方式:pip
    • 软件版本:2.3(最新)
    bug 
    opened by Yanghanwa 0
  • 启动时protobuf 报错

    启动时protobuf 报错

    bug描述 启动时protobuf 报错, 是否考虑升级protobuf 或者在pip包中指定protobuf版本

    截屏

    # eiseg                                                                                                                                                                                                                                   
    Traceback (most recent call last):
      File "/Users/tachao/miniconda3/bin/eiseg", line 5, in <module>
        from eiseg.run import main
      File "/Users/tachao/miniconda3/lib/python3.9/site-packages/eiseg/run.py", line 25, in <module>
        from app import APP_EISeg  # 导入带槽的界面
      File "/Users/tachao/miniconda3/lib/python3.9/site-packages/eiseg/app.py", line 34, in <module>
        from controller import InteractiveController
      File "/Users/tachao/miniconda3/lib/python3.9/site-packages/eiseg/controller.py", line 23, in <module>
        import paddle
      File "/Users/tachao/miniconda3/lib/python3.9/site-packages/paddle/__init__.py", line 25, in <module>
        from .framework import monkey_patch_variable
      File "/Users/tachao/miniconda3/lib/python3.9/site-packages/paddle/framework/__init__.py", line 17, in <module>
        from . import random  # noqa: F401
      File "/Users/tachao/miniconda3/lib/python3.9/site-packages/paddle/framework/random.py", line 16, in <module>
        import paddle.fluid as fluid
      File "/Users/tachao/miniconda3/lib/python3.9/site-packages/paddle/fluid/__init__.py", line 36, in <module>
        from . import framework
      File "/Users/tachao/miniconda3/lib/python3.9/site-packages/paddle/fluid/framework.py", line 35, in <module>
        from .proto import framework_pb2
      File "/Users/tachao/miniconda3/lib/python3.9/site-packages/paddle/fluid/proto/framework_pb2.py", line 33, in <module>
        _descriptor.EnumValueDescriptor(
      File "/Users/tachao/miniconda3/lib/python3.9/site-packages/google/protobuf/descriptor.py", line 755, in __new__
        _message.Message._CheckCalledFromGeneratedFile()
    TypeError: Descriptors cannot not be created directly.
    If this call came from a _pb2.py file, your generated code is out of date and must be regenerated with protoc >= 3.19.0.
    If you cannot immediately regenerate your protos, some other possible workarounds are:
     1. Downgrade the protobuf package to 3.20.x or lower.
     2. Set PROTOCOL_BUFFERS_PYTHON_IMPLEMENTATION=python (but this will use pure-Python parsing and will be much slower).
    
    More information: https://developers.google.com/protocol-buffers/docs/news/2022-05-06#python-updates
    
    

    运行环境(请尽量填写,这可以帮助我们定位问题):

    • 系统: [Mac os/Linux]
    • 安装方式:[pip]
    • 软件版本:[0.5.0]
    bug 
    opened by TaChao 1
  • Hope to add the function of converting json format labels to coco format labels in one click

    Hope to add the function of converting json format labels to coco format labels in one click

    Currently, if we have labeled a batch of images in JSON format, we can only re-label the image if we want to save the label to coco format. This is not very convenient for users, i hope the official can add this function, or can also release the script to achieve such a function. I saw that this software script only semantic tags into instance tags, so few scripts seem to be inconsistent with such a powerful software.

    opened by Leon-Brant 0
Releases(v1.0.5)
UFT - Universal File Transfer With Python

UFT 2.0.0 UFT (Universal File Transfer) is a CLI tool , which can be used to upl

Merwin 1 Feb 18, 2022
Code to reproduce the experiments from our NeurIPS 2021 paper " The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective"

Code To run: python runner.py new --save SAVE_NAME --data PATH_TO_DATA_DIR --dataset DATASET --model model_name [options] --n 1000 - train - t

Geoff Pleiss 5 Dec 12, 2022
Demystifying How Self-Supervised Features Improve Training from Noisy Labels

Demystifying How Self-Supervised Features Improve Training from Noisy Labels This code is a PyTorch implementation of the paper "[Demystifying How Sel

<a href=[email protected]"> 4 Oct 14, 2022
Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, Pattern Recognition

USDAN The implementation of Unified unsupervised and semi-supervised domain adaptation network for cross-scenario face anti-spoofing, which is accepte

11 Nov 03, 2022
Conceptual 12M is a dataset containing (image-URL, caption) pairs collected for vision-and-language pre-training.

Conceptual 12M We introduce the Conceptual 12M (CC12M), a dataset with ~12 million image-text pairs meant to be used for vision-and-language pre-train

Google Research Datasets 226 Dec 07, 2022
PyTorch Implementation of Sparse DETR

Sparse DETR By Byungseok Roh*, Jaewoong Shin*, Wuhyun Shin*, and Saehoon Kim at Kakao Brain. (*: Equal contribution) This repository is an official im

Kakao Brain 113 Dec 28, 2022
MoCoGAN: Decomposing Motion and Content for Video Generation

MoCoGAN: Decomposing Motion and Content for Video Generation This repository contains an implementation and further details of MoCoGAN: Decomposing Mo

Sergey Tulyakov 514 Dec 18, 2022
Optimized code based on M2 for faster image captioning training

Transformer Captioning This repository contains the code for Transformer-based image captioning. Based on meshed-memory-transformer, we further optimi

lyricpoem 16 Dec 16, 2022
Unoffical reMarkable AddOn for Firefox.

reMarkable for Firefox (Download) This repo converts the offical reMarkable Chrome Extension into a Firefox AddOn published here under the name "Unoff

Jelle Schutter 45 Nov 28, 2022
KwaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%)

KuaiRec: A Fully-observed Dataset for Recommender Systems (Density: Almost 100%) KuaiRec is a real-world dataset collected from the recommendation log

Chongming GAO (高崇铭) 70 Dec 28, 2022
Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning

Breaking Shortcut: Exploring Fully Convolutional Cycle-Consistency for Video Correspondence Learning Yansong Tang *, Zhenyu Jiang *, Zhenda Xie *, Yue

Zhenyu Jiang 12 Nov 16, 2022
EMNLP 2021: Single-dataset Experts for Multi-dataset Question-Answering

MADE (Multi-Adapter Dataset Experts) This repository contains the implementation of MADE (Multi-adapter dataset experts), which is described in the pa

Princeton Natural Language Processing 68 Jul 18, 2022
Just Go with the Flow: Self-Supervised Scene Flow Estimation

Just Go with the Flow: Self-Supervised Scene Flow Estimation Code release for the paper Just Go with the Flow: Self-Supervised Scene Flow Estimation,

Himangi Mittal 50 Nov 22, 2022
PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR)

This is a PyTorch implementation of EGVSR: Efficcient & Generic Video Super-Resolution (VSR), using subpixel convolution to optimize the inference speed of TecoGAN VSR model. Please refer to the offi

789 Jan 04, 2023
PyTorch implementations of the NeRF model described in "NeRF: Representing Scenes as Neural Radiance Fields for View Synthesis"

PyTorch NeRF and pixelNeRF NeRF: Tiny NeRF: pixelNeRF: This repository contains minimal PyTorch implementations of the NeRF model described in "NeRF:

Michael A. Alcorn 178 Dec 20, 2022
Embodied Intelligence via Learning and Evolution

Embodied Intelligence via Learning and Evolution This is the code for the paper Embodied Intelligence via Learning and Evolution Agrim Gupta, Silvio S

Agrim Gupta 111 Dec 13, 2022
TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)

SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap

73 Nov 06, 2022
Ultra-lightweight human body posture key point CNN model. ModelSize:2.3MB HUAWEI P40 NCNN benchmark: 6ms/img,

Ultralight-SimplePose Support NCNN mobile terminal deployment Based on MXNET(=1.5.1) GLUON(=0.7.0) framework Top-down strategy: The input image is t

223 Dec 27, 2022
Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow

xRBM Library Implementation of Restricted Boltzmann Machine (RBM) and its variants in Tensorflow Installation Using pip: pip install xrbm Examples Tut

Omid Alemi 55 Dec 29, 2022
Large dataset storage format for Pytorch

H5Record Large dataset ( 100G, = 1T) storage format for Pytorch (wip) Support python 3 pip install h5record Why? Writing large dataset is still a

theblackcat102 43 Oct 22, 2022