A library to inspect itermediate layers of PyTorch models.

Overview

A library to inspect itermediate layers of PyTorch models.

Why?

It's often the case that we want to inspect intermediate layers of a model without modifying the code e.g. visualize attention matrices of language models, get values from an intermediate layer to feed to another layer, or applying a loss function to intermediate layers.

Install

$ pip install surgeon-pytorch

PyPI - Python Version

Usage

Inspect

Given a PyTorch model we can display all layers using get_layers:

import torch
import torch.nn as nn

from surgeon_pytorch import Inspect, get_layers

class SomeModel(nn.Module):

    def __init__(self):
        super().__init__()
        self.layer1 = nn.Linear(5, 3)
        self.layer2 = nn.Linear(3, 2)
        self.layer3 = nn.Linear(2, 1)

    def forward(self, x):
        x1 = self.layer1(x)
        x2 = self.layer2(x1)
        y = self.layer3(x2)
        return y


model = SomeModel()
print(get_layers(model)) # ['layer1', 'layer2', 'layer3']

Then we can wrap our model to be inspected using Inspect and in every forward call the new model we will also output the provided layer outputs (in second return value):

model_wrapped = Inspect(model, layer='layer2')
x = torch.rand(1, 5)
y, x2 = model_wrapped(x)
print(x2) # tensor([[-0.2726,  0.0910]], grad_fn=<AddmmBackward0>)

We can also provide a list of layers:

model_wrapped = Inspect(model, layer=['layer1', 'layer2'])
x = torch.rand(1, 5)
y, [x1, x2] = model_wrapped(x)
print(x1) # tensor([[ 0.1739,  0.3844, -0.4724]], grad_fn=<AddmmBackward0>)
print(x2) # tensor([[-0.2238,  0.0107]], grad_fn=<AddmmBackward0>)

Or a dictionary to get named outputs:

model_wrapped = Inspect(model, layer={'x1': 'layer1', 'x2': 'layer2'})
x = torch.rand(1, 5)
y, layers = model_wrapped(x)
print(layers)
"""
{
    'x1': tensor([[ 0.3707,  0.6584, -0.2970]], grad_fn=<AddmmBackward0>),
    'x2': tensor([[-0.1953, -0.3408]], grad_fn=<AddmmBackward0>)
}
"""

TODO

  • add extract function to get intermediate block
You might also like...
Ever felt tired after preprocessing the dataset, and not wanting to write any code further to train your model? Ever encountered a situation where you wanted to record the hyperparameters of the trained model and able to retrieve it afterward? Models Playground is here to help you do that. Models playground allows you to train your models right from the browser. pyhsmm - library for approximate unsupervised inference in Bayesian Hidden Markov Models (HMMs) and explicit-duration Hidden semi-Markov Models (HSMMs), focusing on the Bayesian Nonparametric extensions, the HDP-HMM and HDP-HSMM, mostly with weak-limit approximations. PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer
TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

Pytorch library for end-to-end transformer models training and serving

Pytorch library for end-to-end transformer models training and serving

This repository provides an efficient PyTorch-based library for training deep models.

An Efficient Library for Training Deep Models This repository provides an efficient PyTorch-based library for training deep models. Installation Make

TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

TorchMultimodal (Alpha Release) Introduction TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Comments
  • Use one backbone with different heads

    Use one backbone with different heads

    Is it possible to save the results from the backbone and apply them on the heads of the all the other models. My goal was to try to save time by avoiding repeating the backbone part. Instead of running the 3 complete models (left), only run the backbone 1 time and switch only the heads for the 3 models (right), therefore not repeating executing the backbone every time in yolov5 model.

    Thank you for the help!

    question 
    opened by brunopatricio2012 4
  • Support for DataParallel?

    Support for DataParallel?

    Hi, I noticed that the current version does not support parallel models (at least those created using torch.nn.DataParallel) since the forward hook does not differentiate between the different copies of the model and a model wrapped with Inspect will just return the intermediate features of the last copy of the parallelized model to run.

    Are you planning on fixing this issue/supporting this use case?

    opened by zimmerrol 1
Releases(0.0.4)
Owner
archinet.ai
AI Research Group
archinet.ai
On the adaptation of recurrent neural networks for system identification

On the adaptation of recurrent neural networks for system identification This repository contains the Python code to reproduce the results of the pape

Marco Forgione 3 Jan 13, 2022
Co-GAIL: Learning Diverse Strategies for Human-Robot Collaboration

CoGAIL Table of Content Overview Installation Dataset Training Evaluation Trained Checkpoints Acknowledgement Citations License Overview This reposito

Jeremy Wang 29 Dec 24, 2022
Improving Compound Activity Classification via Deep Transfer and Representation Learning

Improving Compound Activity Classification via Deep Transfer and Representation Learning This repository is the official implementation of Improving C

NingLab 2 Nov 24, 2021
CNN designed for pansharpening

PROGRESSIVE BAND-SEPARATED CONVOLUTIONAL NEURAL NETWORK FOR MULTISPECTRAL PANSHARPENING This repository contains main code for the paper PROGRESSIVE B

SerendipitysX 3 Dec 29, 2021
Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients

LSF-SAC Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy G

Hanhan 2 Aug 14, 2022
A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

A Vision Transformer approach that uses concatenated query and reference images to learn the relationship between query and reference images directly.

24 Dec 13, 2022
A PyTorch implementation of NeRF (Neural Radiance Fields) that reproduces the results.

NeRF-pytorch NeRF (Neural Radiance Fields) is a method that achieves state-of-the-art results for synthesizing novel views of complex scenes. Here are

Yen-Chen Lin 3.2k Jan 08, 2023
Decorator for PyMC3

sampled Decorator for reusable models in PyMC3 Provides syntactic sugar for reusable models with PyMC3. This lets you separate creating a generative m

Colin 50 Oct 08, 2021
FairMOT - A simple baseline for one-shot multi-object tracking

FairMOT - A simple baseline for one-shot multi-object tracking

Yifu Zhang 3.6k Jan 08, 2023
TumorInsight is a Brain Tumor Detection and Classification model built using RESNET50 architecture.

A Brain Tumor Detection and Classification Model built using RESNET50 architecture. The model is also deployed as a web application using Flask framework.

Pranav Khurana 0 Aug 17, 2021
This is the official pytorch implementation for our ICCV 2021 paper "TRAR: Routing the Attention Spans in Transformers for Visual Question Answering" on VQA Task

🌈 ERASOR (RA-L'21 with ICRA Option) Official page of "ERASOR: Egocentric Ratio of Pseudo Occupancy-based Dynamic Object Removal for Static 3D Point C

Hyungtae Lim 225 Dec 29, 2022
Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

SSRL-for-image-classification Semi-supervised Representation Learning for Remote Sensing Image Classification Based on Generative Adversarial Networks

Feng 2 Nov 19, 2021
[CVPR2021 Oral] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation.

FFB6D This is the official source code for the CVPR2021 Oral work, FFB6D: A Full Flow Biderectional Fusion Network for 6D Pose Estimation. (Arxiv) Tab

Yisheng (Ethan) He 201 Dec 28, 2022
Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2

Mask2Former: Masked-attention Mask Transformer for Universal Image Segmentation in TensorFlow 2 Bowen Cheng, Ishan Misra, Alexander G. Schwing, Alexan

Phan Nguyen 1 Dec 16, 2021
Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor.

Qcover is an open source effort to help exploring combinatorial optimization problems in Noisy Intermediate-scale Quantum(NISQ) processor. It is devel

33 Nov 11, 2022
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023
The Malware Open-source Threat Intelligence Family dataset contains 3,095 disarmed PE malware samples from 454 families

MOTIF Dataset The Malware Open-source Threat Intelligence Family (MOTIF) dataset contains 3,095 disarmed PE malware samples from 454 families, labeled

Booz Allen Hamilton 112 Dec 13, 2022
Code for One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022)

One-shot Talking Face Generation from Single-speaker Audio-Visual Correlation Learning (AAAI 2022) Paper | Demo Requirements Python = 3.6 , Pytorch

FuxiVirtualHuman 84 Jan 03, 2023
Consensus score for tripadvisor

ContripScore ContripScore is essentially a score that combines an Internet platform rating and a consensus rating from sentiment analysis (For instanc

Pepe 1 Jan 13, 2022
Neural Caption Generator with Attention

Neural Caption Generator with Attention Tensorflow implementation of "Show

Taeksoo Kim 510 Nov 30, 2022