A library to inspect itermediate layers of PyTorch models.

Overview

A library to inspect itermediate layers of PyTorch models.

Why?

It's often the case that we want to inspect intermediate layers of a model without modifying the code e.g. visualize attention matrices of language models, get values from an intermediate layer to feed to another layer, or applying a loss function to intermediate layers.

Install

$ pip install surgeon-pytorch

PyPI - Python Version

Usage

Inspect

Given a PyTorch model we can display all layers using get_layers:

import torch
import torch.nn as nn

from surgeon_pytorch import Inspect, get_layers

class SomeModel(nn.Module):

    def __init__(self):
        super().__init__()
        self.layer1 = nn.Linear(5, 3)
        self.layer2 = nn.Linear(3, 2)
        self.layer3 = nn.Linear(2, 1)

    def forward(self, x):
        x1 = self.layer1(x)
        x2 = self.layer2(x1)
        y = self.layer3(x2)
        return y


model = SomeModel()
print(get_layers(model)) # ['layer1', 'layer2', 'layer3']

Then we can wrap our model to be inspected using Inspect and in every forward call the new model we will also output the provided layer outputs (in second return value):

model_wrapped = Inspect(model, layer='layer2')
x = torch.rand(1, 5)
y, x2 = model_wrapped(x)
print(x2) # tensor([[-0.2726,  0.0910]], grad_fn=<AddmmBackward0>)

We can also provide a list of layers:

model_wrapped = Inspect(model, layer=['layer1', 'layer2'])
x = torch.rand(1, 5)
y, [x1, x2] = model_wrapped(x)
print(x1) # tensor([[ 0.1739,  0.3844, -0.4724]], grad_fn=<AddmmBackward0>)
print(x2) # tensor([[-0.2238,  0.0107]], grad_fn=<AddmmBackward0>)

Or a dictionary to get named outputs:

model_wrapped = Inspect(model, layer={'x1': 'layer1', 'x2': 'layer2'})
x = torch.rand(1, 5)
y, layers = model_wrapped(x)
print(layers)
"""
{
    'x1': tensor([[ 0.3707,  0.6584, -0.2970]], grad_fn=<AddmmBackward0>),
    'x2': tensor([[-0.1953, -0.3408]], grad_fn=<AddmmBackward0>)
}
"""

TODO

  • add extract function to get intermediate block
You might also like...
Ever felt tired after preprocessing the dataset, and not wanting to write any code further to train your model? Ever encountered a situation where you wanted to record the hyperparameters of the trained model and able to retrieve it afterward? Models Playground is here to help you do that. Models playground allows you to train your models right from the browser. pyhsmm - library for approximate unsupervised inference in Bayesian Hidden Markov Models (HMMs) and explicit-duration Hidden semi-Markov Models (HSMMs), focusing on the Bayesian Nonparametric extensions, the HDP-HMM and HDP-HSMM, mostly with weak-limit approximations. PyTorch implementation and pretrained models for XCiT models. See XCiT: Cross-Covariance Image Transformer
TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

Pytorch library for end-to-end transformer models training and serving

Pytorch library for end-to-end transformer models training and serving

This repository provides an efficient PyTorch-based library for training deep models.

An Efficient Library for Training Deep Models This repository provides an efficient PyTorch-based library for training deep models. Installation Make

TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

TorchMultimodal (Alpha Release) Introduction TorchMultimodal is a PyTorch library for training state-of-the-art multimodal multi-task models at scale.

Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch
Objective of the repository is to learn and build machine learning models using Pytorch. 30DaysofML Using Pytorch

30 Days Of Machine Learning Using Pytorch Objective of the repository is to learn and build machine learning models using Pytorch. List of Algorithms

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch
Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Pretrained SOTA Deep Learning models, callbacks and more for research and production with PyTorch Lightning and PyTorch

Comments
  • Use one backbone with different heads

    Use one backbone with different heads

    Is it possible to save the results from the backbone and apply them on the heads of the all the other models. My goal was to try to save time by avoiding repeating the backbone part. Instead of running the 3 complete models (left), only run the backbone 1 time and switch only the heads for the 3 models (right), therefore not repeating executing the backbone every time in yolov5 model.

    Thank you for the help!

    question 
    opened by brunopatricio2012 4
  • Support for DataParallel?

    Support for DataParallel?

    Hi, I noticed that the current version does not support parallel models (at least those created using torch.nn.DataParallel) since the forward hook does not differentiate between the different copies of the model and a model wrapped with Inspect will just return the intermediate features of the last copy of the parallelized model to run.

    Are you planning on fixing this issue/supporting this use case?

    opened by zimmerrol 1
Releases(0.0.4)
Owner
archinet.ai
AI Research Group
archinet.ai
Out of Distribution Detection on Natural Adversarial Examples

OOD-on-NAE Research project on out of distribution detection for the Computer Vision course by Prof. Rob Fergus (CSCI-GA 2271) Paper out on arXiv - ht

Anugya 1 Jun 08, 2022
Disentangled Lifespan Face Synthesis

Disentangled Lifespan Face Synthesis Project Page | Paper Demo on Colab Preparation Please follow this github to prepare the environments and dataset.

ไฝ•ๆฃฎ 50 Sep 20, 2022
A PyTorch implementation of "Predict then Propagate: Graph Neural Networks meet Personalized PageRank" (ICLR 2019).

APPNP โ € A PyTorch implementation of Predict then Propagate: Graph Neural Networks meet Personalized PageRank (ICLR 2019). Abstract Neural message pass

Benedek Rozemberczki 329 Dec 30, 2022
Multi-Agent Reinforcement Learning (MARL) method to learn scalable control polices for multi-agent target tracking.

scalableMARL Scalable Reinforcement Learning Policies for Multi-Agent Control CD. Hsu, H. Jeong, GJ. Pappas, P. Chaudhari. "Scalable Reinforcement Lea

Christopher Hsu 17 Nov 17, 2022
Contains code for the paper "Vision Transformers are Robust Learners".

Vision Transformers are Robust Learners This repository contains the code for the paper Vision Transformers are Robust Learners by Sayak Paul* and Pin

Sayak Paul 103 Jan 05, 2023
Meta-learning for NLP

Self-Supervised Meta-Learning for Few-Shot Natural Language Classification Tasks Code for training the meta-learning models and fine-tuning on downstr

IESL 43 Nov 08, 2022
The implementation of "Bootstrapping Semantic Segmentation with Regional Contrast".

ReCo - Regional Contrast This repository contains the source code of ReCo and baselines from the paper, Bootstrapping Semantic Segmentation with Regio

Shikun Liu 128 Dec 30, 2022
This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effects in Video."

Omnimatte in PyTorch This repository contains a re-implementation of the code for the CVPR 2021 paper "Omnimatte: Associating Objects and Their Effect

Erika Lu 728 Dec 28, 2022
A simple, high level, easy-to-use open source Computer Vision library for Python.

ZoomVision : Slicing Aid Detection A simple, high level, easy-to-use open source Computer Vision library for Python. Installation Installing dependenc

Nurettin SinanoฤŸlu 2 Mar 04, 2022
User-friendly bulk RNAseq deconvolution using simulated annealing

Welcome to cellanneal - The user-friendly application for deconvolving omics data sets. cellanneal is an application for deconvolving biological mixtu

11 Dec 16, 2022
PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks

PyDEns PyDEns is a framework for solving Ordinary and Partial Differential Equations (ODEs & PDEs) using neural networks. With PyDEns one can solve PD

Data Analysis Center 220 Dec 26, 2022
NumPy๋กœ ๊ตฌํ˜„ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์ž…๋‹ˆ๋‹ค. (์ž๋™ ๋ฏธ๋ถ„ ์ง€์›)

Deep Learning Library only using NumPy ๋ณธ ๋ ˆํฌ์ง€ํ† ๋ฆฌ๋Š” NumPy ๋งŒ์œผ๋กœ ๊ตฌํ˜„ํ•œ ๋”ฅ๋Ÿฌ๋‹ ๋ผ์ด๋ธŒ๋Ÿฌ๋ฆฌ์ž…๋‹ˆ๋‹ค. ์ž๋™ ๋ฏธ๋ถ„์ด ๊ตฌํ˜„๋˜์–ด ์žˆ์Šต๋‹ˆ๋‹ค. ์ž๋™ ๋ฏธ๋ถ„ ์ž๋™ ๋ฏธ๋ถ„์€ ๋ฏธ๋ถ„์„ ์ž๋™์œผ๋กœ ๊ณ„์‚ฐํ•ด์ฃผ๋Š” ๊ธฐ๋Šฅ์ž…๋‹ˆ๋‹ค. ์•„๋ž˜ ์ฝ”๋“œ๋Š” ์ž๋™ ๋ฏธ๋ถ„์„ ํ™œ์šฉํ•ด ์—ญ์ „ํŒŒ

์กฐ์ค€ํฌ 17 Aug 16, 2022
Implementation of "With a Little Help from my Temporal Context: Multimodal Egocentric Action Recognition, BMVC, 2021" in PyTorch

Multimodal Temporal Context Network (MTCN) This repository implements the model proposed in the paper: Evangelos Kazakos, Jaesung Huh, Arsha Nagrani,

Evangelos Kazakos 13 Nov 24, 2022
Unified MultiWOZ evaluation scripts for the context-to-response task.

MultiWOZ Context-to-Response Evaluation Standardized and easy to use Inform, Success, BLEU ~ See the paper ~ Easy-to-use scripts for standardized eval

Tomรกลก Nekvinda 38 Dec 13, 2022
Easy-to-use,Modular and Extendible package of deep-learning based CTR models .

DeepCTR DeepCTR is a Easy-to-use,Modular and Extendible package of deep-learning based CTR models along with lots of core components layers which can

ๆต…ๆขฆ 6.6k Jan 08, 2023
Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Codebase for Time-series Generative Adversarial Networks (TimeGAN)

Jinsung Yoon 532 Dec 31, 2022
3rd Place Solution of the Traffic4Cast Core Challenge @ NeurIPS 2021

3rd Place Solution of Traffic4Cast 2021 Core Challenge This is the code for our solution to the NeurIPS 2021 Traffic4Cast Core Challenge. Paper Our so

7 Jul 25, 2022
Anderson Acceleration for Deep Learning

Anderson Accelerated Deep Learning (AADL) AADL is a Python package that implements the Anderson acceleration to speed-up the training of deep learning

Oak Ridge National Laboratory 7 Nov 24, 2022
Pytorch reimplementation of the Vision Transformer (An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale)

Vision Transformer Pytorch reimplementation of Google's repository for the ViT model that was released with the paper An Image is Worth 16x16 Words: T

Eunkwang Jeon 1.4k Dec 28, 2022
Python Interview Questions

Python Interview Questions Clone the code to your computer. You need to understand the code in main.py and modify the content in if __name__ =='__main

ClassmateLin 575 Dec 28, 2022