The Malware Open-source Threat Intelligence Family dataset contains 3,095 disarmed PE malware samples from 454 families

Related tags

Deep LearningMOTIF
Overview

MOTIF Dataset

The Malware Open-source Threat Intelligence Family (MOTIF) dataset contains 3,095 disarmed PE malware samples from 454 families, labeled with ground truth confidence. Family labels were obtained by surveying thousands of open-source threat reports published by 14 major cybersecurity organizations between Jan. 1st, 2016 Jan. 1st, 2021. The dataset also provides a comprehensive alias mapping for each family and EMBER raw features for each file.

Further information about the MOTIF dataset is provided in our paper.

If you use the provided data or code, please make sure to cite our paper:

@misc{joyce2021motif,
      title={MOTIF: A Large Malware Reference Dataset with Ground Truth Family Labels},
      author={Robert J. Joyce and Dev Amlani and Charles Nicholas and Edward Raff},
      year={2021},
      eprint={2111.15031},
      archivePrefix={arXiv},
      primaryClass={cs.LG}
}

Downloading the Dataset

Due to the size of the dataset, you must use Git LFS in order to clone the repository. Installation instructions for Git LFS are linked here. On Debian-based systems, the Git LFS package can be installed using:

sudo apt-get install git-lfs

Once Git LFS is installed, you can clone this repository using:

git lfs clone https://github.com/boozallen/MOTIF.git

Dataset Contents

The main dataset is located in dataset/ and contains the following files:

motif_dataset.jsonl

Each line of motif_dataset.jsonl is a .json object with the following entries:

Name Description
md5 MD5 hash of malware sample
sha1 SHA-1 hash of malware sample
sha256 SHA-256 hash of malware sample
reported_hash Hash of malware sample provided in report
reported_family Normalized family name provided in report
aliases List of known aliases for family
label Unique id for malware family (for ML purposes)
report_source Name of organization that published report
report_date Date report was published
report_url URL of report
report_ioc_url URL to report appendix (if any)
appeared Year and month malware sample was first seen

Each .json object also contains EMBER raw features (version 2) for the file:

Name Description
histogram EMBER histogram
byteentropy EMBER byte histogram
strings EMBER strings metadata
general EMBER general file metadata
header EMBER PE header metadata
section EMBER PE section metadata
imports EMBER imports metadata
exports EMBER exports metadata
datadirectories EMBER data directories metadata

motif_families.csv

This file contains an alias mapping for each of the 454 malware families in the MOTIF dataset. It also contains a succinct description of the family and the threat group or campaign that the family is attributed to (if any).

Column Description
Aliases List of known aliases for family
Description Brief sentence describing capabilities of malware family
Attribution (If any) Name of threat actor malware/campaign is attributed to

motif_reports.csv

This file provides information gathered from our original survey of open-source threat reports. We identified 4,369 malware hashes with 595 distinct reported family names during the survey, but we were unable to obtain some of the files and we restricted the MOTIF dataset to only files in the PE file format. The reported hash, family, source, date, URL, and IOC URL of any malware samples which did not make it into the final MOTIF dataset are located here.

MOTIF.7z

The disarmed malware samples are provided in this 1.47GB encrypted .7z file, which can be unzipped using the following password:

i_assume_all_risk_opening_malware

Each file is named in the format MOTIF_MD5, with MD5 indicating the file's hash prior to when it was disarmed.

X_train.dat and y_train.dat

EMBERv2 feature vectors and labels are provided in X_train.dat and y_train.dat, respectively. Feature vectors were computed using LIEF v0.9.0. These files are named for compatibility with the EMBER read_vectorized_features() function. MOTIF is not split into a training or test set, and X_train.dat and y_train.dat contain feature vectors and labels for the entire dataset.

Benchmark Models

We provide code for training the ML models described in our paper, located in benchmarks/. To support these models, code for modified versions of MalConv2 is included in the MalConv2/ directory.

Requirements:

Packages required for training the ML models can be installed using the following commands:

pip3 install -r requirements.txt
python3 setup.py install

Training the LightGBM or outlier detection models also requires EMBER:

pip3 install git+https://github.com/elastic/ember.git

Training the models:

The LightGBM model can be trained using the following command, where /path/to/MOTIF/dataset/ indicates the path to the dataset/ directory.

python3 lgbm.py /path/to/MOTIF/dataset/

The MalConv2 model can be trained using the following command, where /path/to/MOTIF/MOTIF_defanged/ indicates the path to the unzipped folder containing the disarmed malware samples:

python3 malconv.py /path/to/MOTIF/MOTIF_defanged/ /path/to/MOTIF/dataset/motif_dataset.jsonl

The three outlier detection models can be trained using the following command:

python3 outliers.py /path/to/MOTIF/dataset/

Proper Use of Data

Use of this dataset must follow the provided terms of licensing. We intend this dataset to be used for research purposes and have taken measures to prevent abuse by attackers. All files are prevented from running using the same technique as the SOREL dataset. We refer to their statement regarding safety and abuse of the data.

The malware we’re releasing is “disarmed” so that it will not execute. This means it would take knowledge, skill, and time to reconstitute the samples and get them to actually run. That said, we recognize that there is at least some possibility that a skilled attacker could learn techniques from these samples or use samples from the dataset to assemble attack tools to use as part of their malicious activities. However, in reality, there are already many other sources attackers could leverage to gain access to malware information and samples that are easier, faster and more cost effective to use. In other words, this disarmed sample set will have much more value to researchers looking to improve and develop their independent defenses than it will have to attackers.

Owner
Booz Allen Hamilton
The official GitHub organization of Booz Allen Hamilton
Booz Allen Hamilton
A new test set for ImageNet

ImageNetV2 The ImageNetV2 dataset contains new test data for the ImageNet benchmark. This repository provides associated code for assembling and worki

186 Dec 18, 2022
Open source repository for the code accompanying the paper 'PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations'.

PatchNets This is the official repository for the project "PatchNets: Patch-Based Generalizable Deep Implicit 3D Shape Representations". For details,

16 May 22, 2022
LaneAF: Robust Multi-Lane Detection with Affinity Fields

LaneAF: Robust Multi-Lane Detection with Affinity Fields This repository contains Pytorch code for training and testing LaneAF lane detection models i

155 Dec 17, 2022
Official PyTorch implementation of the paper "Graph-based Generative Face Anonymisation with Pose Preservation" in ICIAP 2021

Contents AnonyGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowledgments Citat

Nicola Dall'Asen 10 May 24, 2022
Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

Official PyTorch Implementation of paper EAN: Event Adaptive Network for Efficient Action Recognition

TianYuan 27 Nov 07, 2022
Minecraft Hack Detection With Python

Minecraft Hack Detection An attempt to try and use crowd sourced replays to find

Kuleen Sasse 3 Mar 26, 2022
PyTorch implementation for paper "Full-Body Visual Self-Modeling of Robot Morphologies".

Full-Body Visual Self-Modeling of Robot Morphologies Boyuan Chen, Robert Kwiatkowskig, Carl Vondrick, Hod Lipson Columbia University Project Website |

Boyuan Chen 32 Jan 02, 2023
This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transformers.

TransMix: Attend to Mix for Vision Transformers This repository includes the official project for the paper: TransMix: Attend to Mix for Vision Transf

Jie-Neng Chen 130 Jan 01, 2023
[ECCV 2020] XingGAN for Person Image Generation

Contents XingGAN or CrossingGAN Installation Dataset Preparation Generating Images Using Pretrained Model Train and Test New Models Evaluation Acknowl

Hao Tang 218 Oct 29, 2022
Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease

Heart_Disease_Classification Based on the given clinical dataset, Predict whether the patient having Heart Disease or Not having Heart Disease Dataset

Ashish 1 Jan 30, 2022
A fast, dataset-agnostic, deep visual search engine for digital art history

imgs.ai imgs.ai is a fast, dataset-agnostic, deep visual search engine for digital art history based on neural network embeddings. It utilizes modern

Fabian Offert 5 Dec 14, 2022
Bayesian Deep Learning and Deep Reinforcement Learning for Object Shape Error Response and Correction of Manufacturing Systems

Bayesian Deep Learning for Manufacturing 2.0 (dlmfg) Object Shape Error Response (OSER) Digital Lifecycle Management - In Process Quality Improvement

Sumit Sinha 30 Oct 31, 2022
BERT model training impelmentation using 1024 A100 GPUs for MLPerf Training v1.1

Pre-trained checkpoint and bert config json file Location of checkpoint and bert config json file This MLCommons members Google Drive location contain

SAIT (Samsung Advanced Institute of Technology) 12 Apr 27, 2022
TextureGAN in Pytorch

TextureGAN This code is our PyTorch implementation of TextureGAN [Project] [Arxiv] TextureGAN is a generative adversarial network conditioned on sketc

Patsorn 147 Dec 14, 2022
Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters"

Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters" Pipeline of CLIP-Adapter CLIP-Adapter is a drop-in modul

peng gao 157 Dec 26, 2022
This repository accompanies the ACM TOIS paper "What can I cook with these ingredients?" - Understanding cooking-related information needs in conversational search

In this repository you find data that has been gathered when conducting in-situ experiments in a conversational cooking setting. These data include tr

6 Sep 22, 2022
ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning. In ICCV, 2021.

ACAV100M: Automatic Curation of Large-Scale Datasets for Audio-Visual Video Representation Learning This repository contains the code for our ICCV 202

sangho.lee 28 Nov 08, 2022
Python package provinding tools for artistic interactive applications using AI

Documentation redrawing Python package provinding tools for artistic interactive applications using AI Created by ReDrawing Campinas team for the Open

ReDrawing Campinas 1 Sep 30, 2021
A curated list of Generative Deep Art projects, tools, artworks, and models

Generative Deep Art A curated list of Generative Deep Art projects, tools, artworks, and models Inbox Get started with making AI art in 2022 – deeplea

Filipe Calegario 251 Jan 03, 2023
Voice Gender Recognition

In this project it was used some different Machine Learning models to identify the gender of a voice (Female or Male) based on some specific speech and voice attributes.

Anne Livia 1 Jan 27, 2022