TextureGAN in Pytorch

Overview

TextureGAN

This code is our PyTorch implementation of TextureGAN [Project] [Arxiv]

TextureGAN is a generative adversarial network conditioned on sketch and colors/textures. Users “drag” one or more example textures onto sketched objects and the network realistically applies these textures to the indicated objects.

Setup

Prerequisites

  • Linux or OSX
  • Python 2.7
  • NVIDIA GPU + CUDA CuDNN

Dependency

  • Visdom
  • Ipython notebook
  • Pytorch 0.2 (torch and torchvision)
  • Numpy scikit-image matplotlib etc.

Getting Started

  • Clone this repo
git clone [email protected]:janesjanes/texturegan.git
cd texturegan
  • Prepare Datasets Download the training data:
wget https://s3-us-west-2.amazonaws.com/texturegan/training_handbag.tar.gz
tar -xvcf training_handbag.tar.gz

For shoe: https://s3-us-west-2.amazonaws.com/texturegan/training_shoe.tar.gz

For cloth: https://s3-us-west-2.amazonaws.com/texturegan/training_cloth.tar.gz

  • Train the model from scratch. See python main.py --help for training options. Example arguments (see the paper for the exact parameters value):
python main.py --display_port 7779 --gpu 3 --model texturegan --feature_weight 5e3 --pixel_weight_ab 1e4 
--global_pixel_weight_l 5e5 --local_pixel_weight_l 0 --style_weight 0 --discriminator_weight 5e5 --discriminator_local_weight 7e5  --learning_rate 5e-4 --learning_rate_D 1e-4 --batch_size 36 --save_every 100 --num_epoch 100000 --save_dir [./save_dir] 
--data_path [training_handbags_pretrain/] --learning_rate_D_local  1e-4 --local_texture_size 50 --patch_size_min 20 
--patch_size_max 50 --num_input_texture_patch 1 --visualize_every 5 --num_local_texture_patch 5

Models will be saved to ./save_dir

See more training details in section Train

You can also load our pretrained models in section Download Models.

To view results and losses as the model trains, start a visdom server for the ‘display_port’

python -m visdom.server -port 7779

Test the model

  • See our Ipython Notebook Test_script.ipynb

Train

TextureGAN proposes a two-stage training scheme.

  • The first training state is ground-truth pre-training. We extract input edge and texture patch from the same ground-truth image. Here, we show how to train the ground-truth pretrained model using a combination of pixel loss, color loss, feature loss, and adverserial loss.
python main.py --display_port 7779 --gpu 0 --model texturegan --feature_weight 10 --pixel_weight_ab 1e5 
--global_pixel_weight_l 100 --style_weight 0 --discriminator_weight 10 --learning_rate 1e-3 --learning_rate_D 1e-4 --save_dir
[/home/psangkloy3/handbag_texturedis_scratch] --data_path [./save_dir] --batch_size 16 --save_every 500 --num_epoch 100000 
--input_texture_patch original_image --loss_texture original_image --local_texture_size 50 --discriminator_local_weight 100  
--num_input_texture_patch 1
  • The second stage is external texture fine-tuning. This step is important for the network to reproduce textures for which we have no ground-truth output (e.g. a handbag with snakeskin texture). This time, we extract texture patch from an external texture dataset (see more in Section Download Dataset). We keep the feature and adversarial losses unchanged, but modify the pixel and color losses, to compare the generated result with the entire input texture from which input texture patches are extracted. We fine tune on previous pretrained model with addition of local texture loss by training a separate texture discriminator.
python main.py --display_port 7779 --load 1500 --load_D 1500 --load_epoch 222 --gpu 0 --model texturegan --feature_weight 5e3
--pixel_weight_ab 1e4 --global_pixel_weight_l 5e5 --local_pixel_weight_l 0 --style_weight 0 --discriminator_weight 5e5 
--discriminator_local_weight 7e5  --learning_rate 5e-4 --learning_rate_D 1e-4 --batch_size 36 --save_every 100 --num_epoch
100000 --save_dir [skip_leather_handbag/] --load_dir [handbag_texturedis_scratch/] 
--data_path [./save_dir] --learning_rate_D_local  1e-4 --local_texture_size 50 --patch_size_min 20 --patch_size_max 50 
--num_input_texture_patch 1 --visualize_every 5 --input_texture_patch dtd_texture --num_local_texture_patch 5

Download Datasets

The datasets we used for generating sketch and image pair in this paper are collected by other researchers. Please cite their papers if you use the data. The dataset is split into train and test set.

Edges are computed by HED edge detector + post-processing. [Citation]

The datasets we used for inputting texture patches are DTD Dataset and leather dataset we collected from the internet.

  • DTD Dataset:
  • Leather Dataset:

Download Models

Pre-trained models

Citation

If you find it this code useful for your research, please cite:

"TextureGAN: Controlling Deep Image Synthesis with Texture Patches"

Wenqi Xian, Patsorn Sangkloy, Varun Agrawal, Amit Raj, Jingwan Lu, Chen Fang, Fisher Yu, James Hays in CVPR, 2018.

@article{xian2017texturegan,
  title={Texturegan: Controlling deep image synthesis with texture patches},
  author={Xian, Wenqi and Sangkloy, Patsorn and Agrawal, Varun and Raj, Amit and Lu, Jingwan and Fang, Chen and Yu, Fisher and Hays, James},
  journal={arXiv preprint arXiv:1706.02823},
  year={2017}
}
Machine-in-the-Loop Rewriting for Creative Image Captioning

Machine-in-the-Loop Rewriting for Creative Image Captioning Data Annotated sources of data used in the paper: Data Source URL Mohammed et al. Link Gor

Vishakh P 6 Jul 24, 2022
A library for uncertainty quantification based on PyTorch

Torchuq [logo here] TorchUQ is an extensive library for uncertainty quantification (UQ) based on pytorch. TorchUQ currently supports 10 representation

TorchUQ 96 Dec 12, 2022
The official homepage of the (outdated) COCO-Stuff 10K dataset.

COCO-Stuff 10K dataset v1.1 (outdated) Holger Caesar, Jasper Uijlings, Vittorio Ferrari Overview Welcome to official homepage of the COCO-Stuff [1] da

Holger Caesar 263 Dec 11, 2022
Using Machine Learning to Create High-Res Fine Art

BIG.art: Using Machine Learning to Create High-Res Fine Art How to use GLIDE and BSRGAN to create ultra-high-resolution paintings with fine details By

Robert A. Gonsalves 13 Nov 27, 2022
Nest Protect integration for Home Assistant. This will allow you to integrate your smoke, heat, co and occupancy status real-time in HA.

Nest Protect integration for Home Assistant Custom component for Home Assistant to interact with Nest Protect devices via an undocumented and unoffici

Mick Vleeshouwer 175 Dec 29, 2022
A Data Annotation Tool for Semantic Segmentation, Object Detection and Lane Line Detection.(In Development Stage)

Data-Annotation-Tool How to Run this Tool? To run this software, follow the steps: git clone https://github.com/Autonomous-Car-Project/Data-Annotation

TiVRA AI 13 Aug 18, 2022
Complete the code of prefix-tuning in low data setting

Prefix Tuning Note: 作者在论文中提到使用真实的word去初始化prefix的操作(Initializing the prefix with activations of real words,significantly improves generation)。我在使用作者提供的

Andrew Zeng 4 Jul 11, 2022
A PyTorch port of the Neural 3D Mesh Renderer

Neural 3D Mesh Renderer (CVPR 2018) This repo contains a PyTorch implementation of the paper Neural 3D Mesh Renderer by Hiroharu Kato, Yoshitaka Ushik

Daniilidis Group University of Pennsylvania 1k Jan 09, 2023
optimization routines for hyperparameter tuning

Hyperopt: Distributed Hyperparameter Optimization Hyperopt is a Python library for serial and parallel optimization over awkward search spaces, which

Marc Claesen 398 Nov 09, 2022
On Uncertainty, Tempering, and Data Augmentation in Bayesian Classification

Understanding Bayesian Classification This repository hosts the code to reproduce the results presented in the paper On Uncertainty, Tempering, and Da

Sanyam Kapoor 18 Nov 17, 2022
Numerical-computing-is-fun - Learning numerical computing with notebooks for all ages.

As much as this series is to educate aspiring computer programmers and data scientists of all ages and all backgrounds, it is also a reminder to mysel

EKA foundation 758 Dec 25, 2022
Walk with fastai

Shield: This work is licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International License. Walk with fastai What is this p

Walk with fastai 124 Dec 10, 2022
An implementation of the [Hierarchical (Sig-Wasserstein) GAN] algorithm for large dimensional Time Series Generation

Hierarchical GAN for large dimensional financial market data Implementation This repository is an implementation of the [Hierarchical (Sig-Wasserstein

11 Nov 29, 2022
Permeability Prediction Via Multi Scale 3D CNN

Permeability-Prediction-Via-Multi-Scale-3D-CNN Data: The raw CT rock cores are obtained from the Imperial Colloge portal. The CT rock cores are sub-sa

Mohamed Elmorsy 2 Jul 06, 2022
This repo provides the base code for pytorch-lightning and weight and biases simultaneous integration.

Write your model faster with pytorch-lightning-wadb-code-backbone This repository provides the base code for pytorch-lightning and weight and biases s

9 Mar 29, 2022
PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time The implementation is based on SIGGRAPH Aisa'20. Dependencies Python 3.7 Ubuntu

soratobtai 124 Dec 08, 2022
🤗 Push your spaCy pipelines to the Hugging Face Hub

spacy-huggingface-hub: Push your spaCy pipelines to the Hugging Face Hub This package provides a CLI command for uploading any trained spaCy pipeline

Explosion 30 Oct 09, 2022
An unofficial PyTorch implementation of a federated learning algorithm, FedAvg.

Federated Averaging (FedAvg) in PyTorch An unofficial implementation of FederatedAveraging (or FedAvg) algorithm proposed in the paper Communication-E

Seok-Ju Hahn 123 Jan 06, 2023
SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning

SHRIMP: Sparser Random Feature Models via Iterative Magnitude Pruning This repository is the official implementation of "SHRIMP: Sparser Random Featur

Bobby Shi 0 Dec 16, 2021
TensorFlow Implementation of Unsupervised Cross-Domain Image Generation

Domain Transfer Network (DTN) TensorFlow implementation of Unsupervised Cross-Domain Image Generation. Requirements Python 2.7 TensorFlow 0.12 Pickle

Yunjey Choi 864 Dec 30, 2022