TextureGAN in Pytorch

Overview

TextureGAN

This code is our PyTorch implementation of TextureGAN [Project] [Arxiv]

TextureGAN is a generative adversarial network conditioned on sketch and colors/textures. Users “drag” one or more example textures onto sketched objects and the network realistically applies these textures to the indicated objects.

Setup

Prerequisites

  • Linux or OSX
  • Python 2.7
  • NVIDIA GPU + CUDA CuDNN

Dependency

  • Visdom
  • Ipython notebook
  • Pytorch 0.2 (torch and torchvision)
  • Numpy scikit-image matplotlib etc.

Getting Started

  • Clone this repo
git clone [email protected]:janesjanes/texturegan.git
cd texturegan
  • Prepare Datasets Download the training data:
wget https://s3-us-west-2.amazonaws.com/texturegan/training_handbag.tar.gz
tar -xvcf training_handbag.tar.gz

For shoe: https://s3-us-west-2.amazonaws.com/texturegan/training_shoe.tar.gz

For cloth: https://s3-us-west-2.amazonaws.com/texturegan/training_cloth.tar.gz

  • Train the model from scratch. See python main.py --help for training options. Example arguments (see the paper for the exact parameters value):
python main.py --display_port 7779 --gpu 3 --model texturegan --feature_weight 5e3 --pixel_weight_ab 1e4 
--global_pixel_weight_l 5e5 --local_pixel_weight_l 0 --style_weight 0 --discriminator_weight 5e5 --discriminator_local_weight 7e5  --learning_rate 5e-4 --learning_rate_D 1e-4 --batch_size 36 --save_every 100 --num_epoch 100000 --save_dir [./save_dir] 
--data_path [training_handbags_pretrain/] --learning_rate_D_local  1e-4 --local_texture_size 50 --patch_size_min 20 
--patch_size_max 50 --num_input_texture_patch 1 --visualize_every 5 --num_local_texture_patch 5

Models will be saved to ./save_dir

See more training details in section Train

You can also load our pretrained models in section Download Models.

To view results and losses as the model trains, start a visdom server for the ‘display_port’

python -m visdom.server -port 7779

Test the model

  • See our Ipython Notebook Test_script.ipynb

Train

TextureGAN proposes a two-stage training scheme.

  • The first training state is ground-truth pre-training. We extract input edge and texture patch from the same ground-truth image. Here, we show how to train the ground-truth pretrained model using a combination of pixel loss, color loss, feature loss, and adverserial loss.
python main.py --display_port 7779 --gpu 0 --model texturegan --feature_weight 10 --pixel_weight_ab 1e5 
--global_pixel_weight_l 100 --style_weight 0 --discriminator_weight 10 --learning_rate 1e-3 --learning_rate_D 1e-4 --save_dir
[/home/psangkloy3/handbag_texturedis_scratch] --data_path [./save_dir] --batch_size 16 --save_every 500 --num_epoch 100000 
--input_texture_patch original_image --loss_texture original_image --local_texture_size 50 --discriminator_local_weight 100  
--num_input_texture_patch 1
  • The second stage is external texture fine-tuning. This step is important for the network to reproduce textures for which we have no ground-truth output (e.g. a handbag with snakeskin texture). This time, we extract texture patch from an external texture dataset (see more in Section Download Dataset). We keep the feature and adversarial losses unchanged, but modify the pixel and color losses, to compare the generated result with the entire input texture from which input texture patches are extracted. We fine tune on previous pretrained model with addition of local texture loss by training a separate texture discriminator.
python main.py --display_port 7779 --load 1500 --load_D 1500 --load_epoch 222 --gpu 0 --model texturegan --feature_weight 5e3
--pixel_weight_ab 1e4 --global_pixel_weight_l 5e5 --local_pixel_weight_l 0 --style_weight 0 --discriminator_weight 5e5 
--discriminator_local_weight 7e5  --learning_rate 5e-4 --learning_rate_D 1e-4 --batch_size 36 --save_every 100 --num_epoch
100000 --save_dir [skip_leather_handbag/] --load_dir [handbag_texturedis_scratch/] 
--data_path [./save_dir] --learning_rate_D_local  1e-4 --local_texture_size 50 --patch_size_min 20 --patch_size_max 50 
--num_input_texture_patch 1 --visualize_every 5 --input_texture_patch dtd_texture --num_local_texture_patch 5

Download Datasets

The datasets we used for generating sketch and image pair in this paper are collected by other researchers. Please cite their papers if you use the data. The dataset is split into train and test set.

Edges are computed by HED edge detector + post-processing. [Citation]

The datasets we used for inputting texture patches are DTD Dataset and leather dataset we collected from the internet.

  • DTD Dataset:
  • Leather Dataset:

Download Models

Pre-trained models

Citation

If you find it this code useful for your research, please cite:

"TextureGAN: Controlling Deep Image Synthesis with Texture Patches"

Wenqi Xian, Patsorn Sangkloy, Varun Agrawal, Amit Raj, Jingwan Lu, Chen Fang, Fisher Yu, James Hays in CVPR, 2018.

@article{xian2017texturegan,
  title={Texturegan: Controlling deep image synthesis with texture patches},
  author={Xian, Wenqi and Sangkloy, Patsorn and Agrawal, Varun and Raj, Amit and Lu, Jingwan and Fang, Chen and Yu, Fisher and Hays, James},
  journal={arXiv preprint arXiv:1706.02823},
  year={2017}
}
Gesture Volume Control Using OpenCV and MediaPipe

This Project Uses OpenCV and MediaPipe Hand solutions to identify hands and Change system volume by taking thumb and index finger positions

Pratham Bhatnagar 6 Sep 12, 2022
Scripts used to make and evaluate OpenAlex's concept tagging model

openalex-concept-tagging This repository contains all of the code for getting the concept tagger up and running. To learn more about where this model

OurResearch 18 Dec 09, 2022
GeneralOCR is open source Optical Character Recognition based on PyTorch.

Introduction GeneralOCR is open source Optical Character Recognition based on PyTorch. It makes a fidelity and useful tool to implement SOTA models on

57 Dec 29, 2022
Unofficial Implementation of RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019)

RobustSTL: A Robust Seasonal-Trend Decomposition Algorithm for Long Time Series (AAAI 2019) This repository contains python (3.5.2) implementation of

Doyup Lee 222 Dec 21, 2022
PyTorch implementation of U-TAE and PaPs for satellite image time series panoptic segmentation.

Panoptic Segmentation of Satellite Image Time Series with Convolutional Temporal Attention Networks (ICCV 2021) This repository is the official implem

71 Jan 04, 2023
Shitty gaze mouse controller

demo.mp4 shitty_gaze_mouse_cotroller install tensofflow, cv2 run the main.py and as it starts it will collect data so first raise your left eyebrow(bo

16 Aug 30, 2022
WRENCH: Weak supeRvision bENCHmark

🔧 What is it? Wrench is a benchmark platform containing diverse weak supervision tasks. It also provides a common and easy framework for development

Jieyu Zhang 176 Dec 28, 2022
Think Big, Teach Small: Do Language Models Distil Occam’s Razor?

Think Big, Teach Small: Do Language Models Distil Occam’s Razor? Software related to the paper "Think Big, Teach Small: Do Language Models Distil Occa

0 Dec 07, 2021
MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python

Digital Image Processing Python MATLAB codes of the book "Digital Image Processing Fourth Edition" converted to Python TO-DO: Refactor scripts, curren

Merve Noyan 24 Oct 16, 2022
This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger

Meta Research 31 Oct 17, 2022
End-to-end machine learning project for rices detection

Basmatinet Welcome to this project folks ! Whether you like it or not this project is all about riiiiice or riz in french. It is also about Deep Learn

Béranger 47 Jun 18, 2022
Bayesian Image Reconstruction using Deep Generative Models

Bayesian Image Reconstruction using Deep Generative Models R. Marinescu, D. Moyer, P. Golland For technical inquiries, please create a Github issue. F

Razvan Valentin Marinescu 51 Nov 23, 2022
Delta Conformity Sociopatterns Analysis - Delta Conformity Sociopatterns Analysis

Delta_Conformity_Sociopatterns_Analysis ∆-Conformity is a local homophily measur

2 Jan 09, 2022
Multilingual Image Captioning

Multilingual Image Captioning Authors: Bhavitvya Malik, Gunjan Chhablani Demo Link: https://huggingface.co/spaces/flax-community/multilingual-image-ca

Gunjan Chhablani 32 Nov 25, 2022
StyleGAN - Official TensorFlow Implementation

StyleGAN — Official TensorFlow Implementation Picture: These people are not real – they were produced by our generator that allows control over differ

NVIDIA Research Projects 13.1k Jan 09, 2023
Compressed Video Action Recognition

Compressed Video Action Recognition Chao-Yuan Wu, Manzil Zaheer, Hexiang Hu, R. Manmatha, Alexander J. Smola, Philipp Krähenbühl. In CVPR, 2018. [Proj

Chao-Yuan Wu 479 Dec 26, 2022
Repository for self-supervised landmark discovery

self-supervised-landmarks Repository for self-supervised landmark discovery Requirements pytorch pynrrd (for 3d images) Usage The use of this models i

Riddhish Bhalodia 2 Apr 18, 2022
[ICCV21] Self-Calibrating Neural Radiance Fields

Self-Calibrating Neural Radiance Fields, ICCV, 2021 Project Page | Paper | Video Author Information Yoonwoo Jeong [Google Scholar] Seokjun Ahn [Google

381 Dec 30, 2022
基于Pytorch实现优秀的自然图像分割框架!(包括FCN、U-Net和Deeplab)

语义分割学习实验-基于VOC数据集 usage: 下载VOC数据集,将JPEGImages SegmentationClass两个文件夹放入到data文件夹下。 终端切换到目标目录,运行python train.py -h查看训练 (torch) Li Xiang 28 Dec 21, 2022

Implementation of Monocular Direct Sparse Localization in a Prior 3D Surfel Map (DSL)

DSL Project page: https://sites.google.com/view/dsl-ram-lab/ Monocular Direct Sparse Localization in a Prior 3D Surfel Map Authors: Haoyang Ye, Huaiya

Haoyang Ye 93 Nov 30, 2022