The official homepage of the (outdated) COCO-Stuff 10K dataset.

Overview

COCO-Stuff 10K dataset v1.1 (outdated)

Holger Caesar, Jasper Uijlings, Vittorio Ferrari

Overview

COCO-Stuff example annotations

Welcome to official homepage of the COCO-Stuff [1] dataset. COCO-Stuff augments the popular COCO [2] dataset with pixel-level stuff annotations. These annotations can be used for scene understanding tasks like semantic segmentation, object detection and image captioning.

Overview

Highlights

  • 10,000 complex images from COCO [2]
  • Dense pixel-level annotations
  • 91 thing and 91 stuff classes
  • Instance-level annotations for things from COCO [2]
  • Complex spatial context between stuff and things
  • 5 captions per image from COCO [2]

Updates

  • 11 Jul 2017: Added working Deeplab models for Resnet and VGG
  • 06 Apr 2017: Dataset version 1.1: Modified label indices
  • 31 Mar 2017: Published annotations in JSON format
  • 09 Mar 2017: Added label hierarchy scripts
  • 08 Mar 2017: Corrections to table 2 in arXiv paper [1]
  • 10 Feb 2017: Added script to extract SLICO superpixels in annotation tool
  • 12 Dec 2016: Dataset version 1.0 and arXiv paper [1] released

Results

The current release of COCO-Stuff-10K publishes both the training and test annotations and users report their performance individually. We invite users to report their results to us to complement this table. In the near future we will extend COCO-Stuff to all images in COCO and organize an official challenge where the test annotations will only be known to the organizers.

For the updated table please click here.

Method Source Class-average accuracy Global accuracy Mean IOU FW IOU
FCN-16s [3] [1] 34.0% 52.0% 22.7% -
Deeplab VGG-16 (no CRF) [4] [1] 38.1% 57.8% 26.9% -
FCN-8s [3] [6] 38.5% 60.4% 27.2% -
DAG-RNN + CRF [6] [6] 42.8% 63.0% 31.2% -
OHE + DC + FCN+ [5] [5] 45.8% 66.6% 34.3% 51.2%
Deeplab ResNet (no CRF) [4] - 45.5% 65.1% 34.4% 50.4%
W2V + DC + FCN+ [5] [5] 45.1% 66.1% 34.7% 51.0%

Dataset

Filename Description Size
cocostuff-10k-v1.1.zip COCO-Stuff dataset v. 1.1, images and annotations 2.0 GB
cocostuff-10k-v1.1.json COCO-Stuff dataset v. 1.1, annotations in JSON format (optional) 62.3 MB
cocostuff-labels.txt A list of the 1+91+91 classes in COCO-Stuff 2.3 KB
cocostuff-readme.txt This document 6.5 KB
Older files
cocostuff-10k-v1.0.zip COCO-Stuff dataset version 1.0, including images and annotations 2.6 GB

Usage

To use the COCO-Stuff dataset, please follow these steps:

  1. Download or clone this repository using git: git clone https://github.com/nightrome/cocostuff10k.git
  2. Open the dataset folder in your shell: cd cocostuff10k
  3. If you have Matlab, run the following commands:
  • Add the code folder to your Matlab path: startup();
  • Run the demo script in Matlab demo_cocoStuff();
  • The script displays an image, its thing, stuff and thing+stuff annotations, as well as the image captions.
  1. Alternatively run the following Linux commands or manually download and unpack the dataset:
  • wget --directory-prefix=downloads http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/cocostuff-10k-v1.1.zip
  • unzip downloads/cocostuff-10k-v1.1.zip -d dataset/

MAT Format

The COCO-Stuff annotations are stored in separate .mat files per image. These files follow the same format as used by Tighe et al.. Each file contains the following fields:

  • S: The pixel-wise label map of size [height x width].
  • names: The names of the thing and stuff classes in COCO-Stuff. For more details see Label Names & Indices.
  • captions: Image captions from [2] that are annotated by 5 distinct humans on average.
  • regionMapStuff: A map of the same size as S that contains the indices for the approx. 1000 regions (superpixels) used to annotate the image.
  • regionLabelsStuff: A list of the stuff labels for each superpixel. The indices in regionMapStuff correspond to the entries in regionLabelsStuff.

JSON Format

Alternatively, we also provide stuff and thing annotations in the COCO-style JSON format. The thing annotations are copied from COCO. We encode every stuff class present in an image as a single annotation using the RLE encoding format of COCO. To get the annotations:

  • Either download them: wget --directory-prefix=dataset/annotations-json http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/cocostuff-10k-v1.1.json
  • Or extract them from the .mat file annotations using this Python script.

Label Names & Indices

To be compatible with COCO, version 1.1 of COCO-Stuff has 91 thing classes (1-91), 91 stuff classes (92-182) and 1 class "unlabeled" (0). Note that 11 of the thing classes from COCO 2015 do not have any segmentation annotations. The classes desk, door and mirror could be either stuff or things and therefore occur in both COCO and COCO-Stuff. To avoid confusion we add the suffix "-stuff" to those classes in COCO-Stuff. The full list of classes can be found here.

The older version 1.0 of COCO-Stuff had 80 thing classes (2-81), 91 stuff classes (82-172) and 1 class "unlabeled" (1).

Label Hierarchy

The hierarchy of labels is stored in CocoStuffClasses. To visualize it, run CocoStuffClasses.showClassHierarchyStuffThings() (also available for just stuff and just thing classes) in Matlab. The output should look similar to the following figure: COCO-Stuff label hierarchy

Semantic Segmentation Models

To encourage further research of stuff and things we provide the trained semantic segmentation model (see Sect. 4.4 in [1]).

DeepLab VGG-16

Use the following steps to download and setup the DeepLab [4] semantic segmentation model trained on COCO-Stuff. It requires deeplab-public-ver2, which is built on Caffe:

  1. Install Cuda. I recommend version 7.0. For version 8.0 you will need to apply the fix described here in step 3.
  2. Download deeplab-public-ver2: git submodule update --init models/deeplab/deeplab-public-ver2
  3. Compile and configure deeplab-public-ver2 following the author's instructions. Depending on your system setup you might have to install additional packages, but a minimum setup could look like this:
  • cd models/deeplab/deeplab-public-ver2
  • cp Makefile.config.example Makefile.config
  • Optionally add CuDNN support or modify library paths in the Makefile.
  • make all -j8
  • cd ../..
  1. Configure the COCO-Stuff dataset:
  • Create folders: mkdir models/deeplab/deeplab-public-ver2/cocostuff && mkdir models/deeplab/deeplab-public-ver2/cocostuff/data
  • Create a symbolic link to the images: cd models/deeplab/cocostuff/data && ln -s ../../../../dataset/images images && cd ../../../..
  • Convert the annotations by running the Matlab script: startup(); convertAnnotationsDeeplab();
  1. Download the base VGG-16 model:
  • wget --directory-prefix=models/deeplab/cocostuff/model/deeplabv2_vgg16 http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/deeplabv2_vgg16_init.caffemodel
  1. Run cd models/deeplab && ./run_cocostuff_vgg16.sh to train and test the network on COCO-Stuff.

DeepLab ResNet 101

The default Deeplab model performs center crops of size 513*513 pixels of an image, if any side is larger than that. Since we want to segment the whole image at test time, we choose to resize the images to 513x513, perform the semantic segmentation and then rescale it elsewhere. Note that without the final step, the performance might differ slightly.

  1. Follow steps 1-4 of the DeepLab VGG-16 section above.
  2. Download the base ResNet model:
  • wget --directory-prefix=models/deeplab/cocostuff/model/deeplabv2_resnet101 http://calvin.inf.ed.ac.uk/wp-content/uploads/data/cocostuffdataset/deeplabv2_resnet101_init.caffemodel
  1. Rescale the images and annotations:
  • cd models/deeplab
  • python rescaleImages.py
  • python rescaleAnnotations.py
  1. Run ./run_cocostuff_resnet101.sh to train and test the network on COCO-Stuff.

Annotation Tool

In [1] we present a simple and efficient stuff annotation tool which was used to annotate the COCO-Stuff dataset. It uses a paintbrush tool to annotate SLICO superpixels (precomputed using the code of Achanta et al.) with stuff labels. These annotations are overlaid with the existing pixel-level thing annotations from COCO. We provide a basic version of our annotation tool:

  • Prepare the required data:
    • Specify a username in annotator/data/input/user.txt.
    • Create a list of images in annotator/data/input/imageLists/<user>.list.
    • Extract the thing annotations for all images in Matlab: extractThings().
    • Extract the superpixels for all images in Matlab: extractSLICOSuperpixels().
    • To enable or disable superpixels, thing annotations and polygon drawing, take a look at the flags at the top of CocoStuffAnnotator.m.
  • Run the annotation tool in Matlab: CocoStuffAnnotator();
    • The tool writes the .mat label files to annotator/data/output/annotations.
    • To create a .png preview of the annotations, run annotator/code/exportImages.m in Matlab. The previews will be saved to annotator/data/output/preview.

Misc

References

Licensing

COCO-Stuff is a derivative work of the COCO dataset. The authors of COCO do not in any form endorse this work. Different licenses apply:

Contact

If you have any questions regarding this dataset, please contact us at holger-at-it-caesar.com.

Owner
Holger Caesar
Author of the COCO-Stuff and nuScenes datasets.
Holger Caesar
OpenMMLab Detection Toolbox and Benchmark

MMDetection is an open source object detection toolbox based on PyTorch. It is a part of the OpenMMLab project.

OpenMMLab 22.5k Jan 05, 2023
Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers

Pose Transformers: Human Motion Prediction with Non-Autoregressive Transformers This is the repo used for human motion prediction with non-autoregress

Idiap Research Institute 26 Dec 14, 2022
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
SBINN: Systems-biology informed neural network

SBINN: Systems-biology informed neural network The source code for the paper M. Daneker, Z. Zhang, G. E. Karniadakis, & L. Lu. Systems biology: Identi

Lu Group 15 Nov 19, 2022
Deep Residual Learning for Image Recognition

Deep Residual Learning for Image Recognition This is a Torch implementation of "Deep Residual Learning for Image Recognition",Kaiming He, Xiangyu Zhan

Kimmy 561 Dec 01, 2022
Boosted CVaR Classification (NeurIPS 2021)

Boosted CVaR Classification Runtian Zhai, Chen Dan, Arun Sai Suggala, Zico Kolter, Pradeep Ravikumar NeurIPS 2021 Table of Contents Quick Start Train

Runtian Zhai 4 Feb 15, 2022
Artificial Intelligence search algorithm base on Pacman

Pacman Search Artificial Intelligence search algorithm base on Pacman Source The Pacman Projects by the University of California, Berkeley. Layouts Di

Day Fundora 6 Nov 17, 2022
3rd Place Solution of the Traffic4Cast Core Challenge @ NeurIPS 2021

3rd Place Solution of Traffic4Cast 2021 Core Challenge This is the code for our solution to the NeurIPS 2021 Traffic4Cast Core Challenge. Paper Our so

7 Jul 25, 2022
Soft actor-critic is a deep reinforcement learning framework for training maximum entropy policies in continuous domains.

This repository is no longer maintained. Please use our new Softlearning package instead. Soft Actor-Critic Soft actor-critic is a deep reinforcement

Tuomas Haarnoja 752 Jan 07, 2023
This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems

Stability Audit This repository contains code used to audit the stability of personality predictions made by two algorithmic hiring systems, Humantic

Data, Responsibly 4 Oct 27, 2022
Molecular Sets (MOSES): A benchmarking platform for molecular generation models

Molecular Sets (MOSES): A benchmarking platform for molecular generation models Deep generative models are rapidly becoming popular for the discovery

Neelesh C A 3 Oct 14, 2022
Adabelief-Optimizer - Repository for NeurIPS 2020 Spotlight "AdaBelief Optimizer: Adapting stepsizes by the belief in observed gradients"

AdaBelief Optimizer NeurIPS 2020 Spotlight, trains fast as Adam, generalizes well as SGD, and is stable to train GANs. Release of package We have rele

Juntang Zhuang 998 Dec 29, 2022
Code for “ACE-HGNN: Adaptive Curvature ExplorationHyperbolic Graph Neural Network”

ACE-HGNN: Adaptive Curvature Exploration Hyperbolic Graph Neural Network This repository is the implementation of ACE-HGNN in PyTorch. Environment pyt

9 Nov 28, 2022
JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation

JASS: Japanese-specific Sequence to Sequence Pre-training for Neural Machine Translation This the repository for this paper. Find extensions of this w

Zhuoyuan Mao 14 Oct 26, 2022
source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

International Business Machines 71 Nov 15, 2022
Pytorch implementation of "Neural Wireframe Renderer: Learning Wireframe to Image Translations"

Neural Wireframe Renderer: Learning Wireframe to Image Translations Pytorch implementation of ideas from the paper Neural Wireframe Renderer: Learning

Yuan Xue 7 Nov 14, 2022
AVD Quickstart Containerlab

AVD Quickstart Containerlab WARNING This repository is still under construction. It's fully functional, but has number of limitations. For example: RE

Carl Buchmann 3 Apr 10, 2022
SGoLAM - Simultaneous Goal Localization and Mapping

SGoLAM - Simultaneous Goal Localization and Mapping PyTorch implementation of the MultiON runner-up entry, SGoLAM: Simultaneous Goal Localization and

10 Jan 05, 2023
Structured Data Gradient Pruning (SDGP)

Structured Data Gradient Pruning (SDGP) Weight pruning is a technique to make Deep Neural Network (DNN) inference more computationally efficient by re

Bradley McDanel 10 Nov 11, 2022
Official PyTorch implementation of "Improving Face Recognition with Large AgeGaps by Learning to Distinguish Children" (BMVC 2021)

Inter-Prototype (BMVC 2021): Official Project Webpage This repository provides the official PyTorch implementation of the following paper: Improving F

Jungsoo Lee 16 Jun 30, 2022