Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space

Overview

extrinsic2pyramid

Visualize Camera's Pose Using Extrinsic Parameter by Plotting Pyramid Model on 3D Space

img

Intro

A very simple and straightforward module for visualizing camera pose on 3D space. This module just have a only utility, as like its name, to convert extrinsic camera parameter(transform matrix) to visual 3D square pyramid, the pyramid's vertex not on the base side(square) is the camera's focal point and The optical axis passes through the focal point and the center of the base.

Note that, this module do not contain any calibration algorithm. It's just for visualizing calibrated parameter.

Requirements

numpy >= 1.2

numpy-quaternion

matplotlib

glob

Trouble Shooting

ImportError: numpy.core.multiarray failed to import

conda install -c conda-forge quaternion

Usage

To visualize extrinsic camera parameters, the only module you need to import is, 'CameraPoseVisualizer' from 'util.camera_pose_visualizer'

from util.camera_pose_visualizer import CameraPoseVisualizer

Initialize visualizer with 3 argument, the limit of visually plotted space.(the minimum/maximum value of x, y, z)

visualizer = CameraPoseVisualizer([-50, 50], [-50, 50], [0, 100])

Conver extrinsic matrix with visualizer. it has 3 argument, extrinsic matrix, color of pyramid, scale of pyramid. The color of pyramid can be both represented as a character like 'r', 'c', 'k', and represented as RGBa sequence.

visualizer.extrinsic2pyramid(np.eye(4), 'c', 10)

... That's all about this module. There are other python packages that can visualize camera pose on visual 3D space and even have more utilities, but, For who just want to visualize camera pose and do not want to spend time to learn NEW BIG multi-purpose 3D graphical library, for example, for SLAM Engineer who just want to qualitatively overview his localization result, or for 3D Machine Learning Engineer who just want to visually overview geometric constraint of new data before preprocess it, This Module can be a quite reasonable choice.

The core source-code of this module is just about-50-lines(not importing any other non-basic sub-module). About-50-line is all you need to grasp this module, that means, easy to be merged to your project, and easy to be a base-module for more complex architecture(see demo2.py).

Dataset

The sample camera parameters in dataset directory is from YCB-M Dataset [1]. The data hierarchy used in this dataset is one of a standard hierarchy that, in particular, almost of NVIDIA's open-sources support. And this dataset share its hierarchy with other datasets like, YCB-VIDEO[2] and FAT[3].

Demo

demo1.py

In fact, just 11-lines of demo1.py is all about the usage of this module.

img

demo2.py

This script is a example that manipulate this module for more complex architecture. Frankly, I made this module as a visualizing tool to visually analyze camera trajectory of YCB-M dataset before numerically preprocess it. I need indoor scenarios which have these constraints, 1.fixed multiple view cameras and we know its parameters. 2.cameras maintain same pose along all scenes. But there is a no dataset perfectly match with these. So, i have to search other scenarios. The alternative scenario i found is that, 1.static scene, 2.moving camera, 3.but along the scenes, there must be at least 4 point, which most of camera-trajectory from different scenes intersect(and camera-pose at that points are similar). Picking up intersecting points and Using them as like fixed multiple view cameras will quite work well for me. But before preprocess it in earnest. By watching trajectory scene-wisely and frame-wisely, I can make a rough estimate and a intuition about the posibility whether this dataset can pass the constraint-3.

img

The colors represent different scenes.

img

The distribution of color represents different frames.

Roadmap

Utility that can toggle trajectory scene-wisely or frame-wisely.

GUI Interface.

References

[1] T. Grenzdörffer, M. Günther, and J. Hertzberg, "YCB-M: A Multi-Camera RGB-D Dataset for Object Recognition and 6DoF Pose Estimation".

[2] Y. Xiang, T. Schmidt, V. Narayanan and D. Fox. "PoseCNN: A Convolutional Neural Network for 6D Object Pose Estimation in Cluttered Scenes".

[3] J. Tremblay, T. To, and S. Birchfield, Falling Things: "A Synthetic Dataset for 3D Object Detection and Pose Estimation".

Owner
JEONG HYEONJIN
Research Interest : 3D Computer Vision (3D Multiple Object Tracking, 3D Reconstruction, Multi-View Image Geometry, 3D Human Motion Recognition, Sensor Fusion)
JEONG HYEONJIN
Python library for science observations from the James Webb Space Telescope

JWST Calibration Pipeline JWST requires Python 3.7 or above and a C compiler for dependencies. Linux and MacOS platforms are tested and supported. Win

Space Telescope Science Institute 386 Dec 30, 2022
Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks

Stochastic Downsampling for Cost-Adjustable Inference and Improved Regularization in Convolutional Networks (SDPoint) This repository contains the cod

Jason Kuen 17 Jul 04, 2022
Discord bot-CTFD-Thread-Parser - Discord bot CTFD-Thread-Parser

Discord bot CTFD-Thread-Parser Description: This tools is used to create automat

15 Mar 22, 2022
Pytorch implementation for DFN: Distributed Feedback Network for Single-Image Deraining.

DFN:Distributed Feedback Network for Single-Image Deraining Abstract Recently, deep convolutional neural networks have achieved great success for sing

6 Nov 05, 2022
DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation

DCSAU-Net: A Deeper and More Compact Split-Attention U-Net for Medical Image Segmentation By Qing Xu, Wenting Duan and Na He Requirements pytorch==1.1

Qing Xu 20 Dec 09, 2022
RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems

RCD: Relation Map Driven Cognitive Diagnosis for Intelligent Education Systems This is our implementation for the paper: Weibo Gao, Qi Liu*, Zhenya Hu

BigData Lab @USTC 中科大大数据实验室 10 Oct 16, 2022
Kernel Point Convolutions

Created by Hugues THOMAS Introduction Update 27/04/2020: New PyTorch implementation available. With SemanticKitti, and Windows supported. This reposit

Hugues THOMAS 584 Jan 07, 2023
Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, and finding their unique parameters (e.g. death rate).

DINN We introduce Disease Informed Neural Networks (DINNs) — neural networks capable of learning how diseases spread, forecasting their progression, a

19 Dec 10, 2022
BRepNet: A topological message passing system for solid models

BRepNet: A topological message passing system for solid models This repository contains the an implementation of BRepNet: A topological message passin

Autodesk AI Lab 42 Dec 30, 2022
Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection

fpn.pytorch Pytorch implementation of Feature Pyramid Network (FPN) for Object Detection Introduction This project inherits the property of our pytorc

Jianwei Yang 912 Dec 21, 2022
Pytorch based library to rank predicted bounding boxes using text/image user's prompts.

pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection. Pytorch based library to rank predicted bounding boxes using t

Sergei Belousov 50 Nov 27, 2022
:hot_pepper: R²SQL: "Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing." (AAAI 2021)

R²SQL The PyTorch implementation of paper Dynamic Hybrid Relation Network for Cross-Domain Context-Dependent Semantic Parsing. (AAAI 2021) Requirement

huybery 60 Dec 31, 2022
Code for Talk-to-Edit (ICCV2021). Paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog.

Talk-to-Edit (ICCV2021) This repository contains the implementation of the following paper: Talk-to-Edit: Fine-Grained Facial Editing via Dialog Yumin

Yuming Jiang 221 Jan 07, 2023
Official implementation for Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020

Likelihood-Regret Official implementation of Likelihood Regret: An Out-of-Distribution Detection Score For Variational Auto-encoder at NeurIPS 2020. T

Xavier 33 Oct 12, 2022
Research code for the paper "Variational Gibbs inference for statistical estimation from incomplete data".

Variational Gibbs inference (VGI) This repository contains the research code for Simkus, V., Rhodes, B., Gutmann, M. U., 2021. Variational Gibbs infer

Vaidotas Šimkus 1 Apr 08, 2022
Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

41 Jan 04, 2023
Hypersearch weight debugging and losses tutorial

tutorial Activate tensorboard option Running TensorBoard remotely When working on a remote server, you can use SSH tunneling to forward the port of th

1 Dec 11, 2021
Source Code For Template-Based Named Entity Recognition Using BART

Template-Based NER Source Code For Template-Based Named Entity Recognition Using BART Training Training train.py Inference inference.py Corpus ATIS (h

174 Dec 19, 2022
Toontown: Galaxy, a new Toontown game based on Disney's Toontown Online

Toontown: Galaxy The official archive repo for Toontown: Galaxy, a new Toontown

1 Feb 15, 2022
Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion Models

Label-Efficient Semantic Segmentation with Diffusion Models Official implementation of the paper Label-Efficient Semantic Segmentation with Diffusion

Yandex Research 355 Jan 06, 2023