PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

Overview

PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time

The implementation is based on SIGGRAPH Aisa'20.

Dependencies

  • Python 3.7
  • Ubuntu 18.04 (The system should run on other Ubuntu versions and Windows, however not tested.)
  • RBDL: Rigid Body Dynamics Library (https://rbdl.github.io/)
  • PyTorch 1.8.1 with GPU support (cuda 10.2 is tested to work)
  • For other python packages, please check requirements.txt

Installation

  • Download and install Python binded RBDL from https://github.com/rbdl/rbdl

  • Install Pytorch 1.8.1 with GPU support (https://pytorch.org/) (other versions should also work but not tested)

  • Install python packages by:

      pip install -r requirements.txt
    

How to Run on the Sample Data

We provide a sample data taken from DeepCap dataset CVPR'20. To run the code on the sample data, first go to physcap_release directory and run:

python pipeline.py --contact_estimation 0 --floor_known 1 --floor_frame  data/floor_frame.npy  --humanoid_path asset/physcap.urdf --skeleton_filename asset/physcap.skeleton --motion_filename data/sample.motion --contact_path data/sample_contacts.npy --stationary_path data/sample_stationary.npy --save_path './results/'

To visualize the prediction, run:

python visualizer.py --q_path ./results/PhyCap_q.npy

To run PhysCap with its full functionality, the floor position should be given as 4x4 matrix (rotation and translation). In case you don't know the floor position, you can still run PhysCap with "--floor_known 0" option:

python pipeline.py --contact_estimation 0 --floor_known 0  --humanoid_path asset/physcap.urdf --skeleton_filename asset/physcap.skeleton --motion_filename data/sample.motion --save_path './results/'

How to Run on Your Data

  1. Run Stage I:

    we employ VNect for the stage I of PhysCap pipeline. Please install the VNect C++ library and use its prediction to run PhysCap. When running VNect, please replace "default.skeleton" with "physcap.skeleton" in asset folder that is compatible with PhysCap skeletion definition (physcap.urdf). After running VNect on your sequence, the predictions (motion.motion and ddd.mdd) will be saved under the specified folder. For this example, we assuem the predictions are saved under "data/VNect_data" folder.

  2. Run Stage II and III:

    First, run the following command to apply preprocessing on the 2D keypoints:

     python process_2Ds.py --input ./data/VNect_data/ddd.mdd --output ./data/VNect_data/ --smoothing 0
    

    The processed keypoints will be stored as "vnect_2ds.npy". Then run the following command to run Stage II and III:

     python pipeline.py --contact_estimation 1 --vnect_2d_path ./data/VNect_data/vnect_2ds.npy --save_path './results/' --floor_known 0 --humanoid_path asset/physcap.urdf --skeleton_filename asset/physcap.skeleton --motion_filename ./data/VNect_data/motion.motion --contact_path results/contacts.npy --stationary_path results/stationary.npy  
    

    In case you know the exact floor position, you can use the options --floor_known 1 --floor_frame /Path/To/FloorFrameFile

    To visualize the results, run:

     python visualizer.py --q_path ./results/PhyCap_q.npy
    

License Terms

Permission is hereby granted, free of charge, to any person or company obtaining a copy of this software and associated documentation files (the "Software") from the copyright holders to use the Software for any non-commercial purpose. Publication, redistribution and (re)selling of the software, of modifications, extensions, and derivates of it, and of other software containing portions of the licensed Software, are not permitted. The Copyright holder is permitted to publically disclose and advertise the use of the software by any licensee.

Packaging or distributing parts or whole of the provided software (including code, models and data) as is or as part of other software is prohibited. Commercial use of parts or whole of the provided software (including code, models and data) is strictly prohibited. Using the provided software for promotion of a commercial entity or product, or in any other manner which directly or indirectly results in commercial gains is strictly prohibited.

THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.

Citation

If the code is used, the licesnee is required to cite the use of VNect and the following publication in any documentation or publication that results from the work:

@article{
	PhysCapTOG2020,
	author = {Shimada, Soshi and Golyanik, Vladislav and Xu, Weipeng and Theobalt, Christian},
	title = {PhysCap: Physically Plausible Monocular 3D Motion Capture in Real Time},
	journal = {ACM Transactions on Graphics}, 
	month = {dec},
	volume = {39},
	number = {6}, 
	articleno = {235},
	year = {2020}, 
	publisher = {ACM}, 
	keywords = {physics-based, 3D, motion capture, real time}
} 
Owner
soratobtai
soratobtai
[ACM MM2021] MGH: Metadata Guided Hypergraph Modeling for Unsupervised Person Re-identification

Introduction This project is developed based on FastReID, which is an ongoing ReID project. Projects BUC In projects/BUC, we implement AAAI 2019 paper

WuYiming 7 Apr 13, 2022
Prososdy Morph: A python library for manipulating pitch and duration in an algorithmic way, for resynthesizing speech.

ProMo (Prosody Morph) Questions? Comments? Feedback? Chat with us on gitter! A library for manipulating pitch and duration in an algorithmic way, for

Tim 71 Jan 02, 2023
Collection of in-progress libraries for entity neural networks.

ENN Incubator Collection of in-progress libraries for entity neural networks: Neural Network Architectures for Structured State Entity Gym: Abstractio

25 Dec 01, 2022
Code accompanying "Dynamic Neural Relational Inference" from CVPR 2020

Code accompanying "Dynamic Neural Relational Inference" This codebase accompanies the paper "Dynamic Neural Relational Inference" from CVPR 2020. This

Colin Graber 48 Dec 23, 2022
PyTorch implementation of saliency map-aided GAN for Auto-demosaic+denosing

Saiency Map-aided GAN for RAW2RGB Mapping The PyTorch implementations and guideline for Saiency Map-aided GAN for RAW2RGB Mapping. 1 Implementations B

Yuzhi ZHAO 20 Oct 24, 2022
A Moonraker plug-in for real-time compensation of frame thermal expansion

Frame Expansion Compensation A Moonraker plug-in for real-time compensation of frame thermal expansion. Installation Credit to protoloft, from whom I

58 Jan 02, 2023
Image-popularity-score - A novel deep regression method for image scoring.

Image-popularity-score - A novel deep regression method for image scoring.

Shoaib ahmed 1 Dec 26, 2021
DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021]

DiscoNet: Learning Distilled Collaboration Graph for Multi-Agent Perception [NeurIPS 2021] Yiming Li, Shunli Ren, Pengxiang Wu, Siheng Chen, Chen Feng

Automation and Intelligence for Civil Engineering (AI4CE) Lab @ NYU 98 Dec 21, 2022
Repository of the paper Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models at ML4AD @ NeurIPS 2021.

Compressing Sensor Data for Remote Assistance of Autonomous Vehicles using Deep Generative Models Code and supplementary materials Repository of the p

Daniel Bogdoll 4 Jul 13, 2022
给yolov5加个gui界面,使用pyqt5,yolov5是5.0版本

博文地址 https://xugaoxiang.com/2021/06/30/yolov5-pyqt5 代码执行 项目中使用YOLOv5的v5.0版本,界面文件是project.ui pip install -r requirements.txt python main.py 图片检测 视频检测

Xu GaoXiang 215 Dec 30, 2022
This is a collection of our NAS and Vision Transformer work.

AutoML - Neural Architecture Search This is a collection of our AutoML-NAS work iRPE (NEW): Rethinking and Improving Relative Position Encoding for Vi

Microsoft 828 Dec 28, 2022
Tensorflow AffordanceNet and AffContext implementations

AffordanceNet and AffContext This is tensorflow AffordanceNet and AffContext implementations. Both are implemented and tested with tensorflow 2.3. The

Beatriz Pérez 6 Dec 01, 2022
A little Python application to auto tag your photos with the power of machine learning.

Tag Machine A little Python application to auto tag your photos with the power of machine learning. Report a bug or request a feature Table of Content

Florian Torres 14 Dec 21, 2022
Generalized Random Forests

generalized random forests A pluggable package for forest-based statistical estimation and inference. GRF currently provides non-parametric methods fo

GRF Labs 781 Dec 25, 2022
Code for the paper: Learning Adversarially Robust Representations via Worst-Case Mutual Information Maximization (https://arxiv.org/abs/2002.11798)

Representation Robustness Evaluations Our implementation is based on code from MadryLab's robustness package and Devon Hjelm's Deep InfoMax. For all t

Sicheng 19 Dec 07, 2022
Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

Official code release for ICCV 2021 paper SNARF: Differentiable Forward Skinning for Animating Non-rigid Neural Implicit Shapes.

235 Dec 26, 2022
Fully Automatic Page Turning on Real Scores

Fully Automatic Page Turning on Real Scores This repository contains the corresponding code for our extended abstract Henkel F., Schwaiger S. and Widm

Florian Henkel 7 Jan 02, 2022
RITA is a family of autoregressive protein models, developed by LightOn in collaboration with the OATML group at Oxford and the Debora Marks Lab at Harvard.

RITA: a Study on Scaling Up Generative Protein Sequence Models RITA is a family of autoregressive protein models, developed by a collaboration of Ligh

LightOn 69 Dec 22, 2022
Official Pytorch implementation of "DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network" (CVPR'21)

DivCo: Diverse Conditional Image Synthesis via Contrastive Generative Adversarial Network Pytorch implementation for our DivCo. We propose a simple ye

64 Nov 22, 2022
[ICCV 2021] Relaxed Transformer Decoders for Direct Action Proposal Generation

RTD-Net (ICCV 2021) This repo holds the codes of paper: "Relaxed Transformer Decoders for Direct Action Proposal Generation", accepted in ICCV 2021. N

Multimedia Computing Group, Nanjing University 80 Nov 30, 2022