[CVPR2021 Oral] FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation.

Overview

FFB6D

This is the official source code for the CVPR2021 Oral work, FFB6D: A Full Flow Biderectional Fusion Network for 6D Pose Estimation. (Arxiv)

Table of Content

Introduction & Citation

FFB6D is a general framework for representation learning from a single RGBD image, and we applied it to the 6D pose estimation task by cascading downstream prediction headers for instance semantic segmentation and 3D keypoint voting prediction from PVN3D(Arxiv, Code, Video). At the representation learning stage of FFB6D, we build bidirectional fusion modules in the full flow of the two networks, where fusion is applied to each encoding and decoding layer. In this way, the two networks can leverage local and global complementary information from the other one to obtain better representations. Moreover, at the output representation stage, we designed a simple but effective 3D keypoints selection algorithm considering the texture and geometry information of objects, which simplifies keypoint localization for precise pose estimation.

Please cite FFB6D & PVN3D if you use this repository in your publications:

@InProceedings{He_2021_CVPR,
author = {He, Yisheng and Huang, Haibin and Fan, Haoqiang and Chen, Qifeng and Sun, Jian},
title = {FFB6D: A Full Flow Bidirectional Fusion Network for 6D Pose Estimation},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2021}
}

@InProceedings{He_2020_CVPR,
author = {He, Yisheng and Sun, Wei and Huang, Haibin and Liu, Jianran and Fan, Haoqiang and Sun, Jian},
title = {PVN3D: A Deep Point-Wise 3D Keypoints Voting Network for 6DoF Pose Estimation},
booktitle = {IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR)},
month = {June},
year = {2020}
}

Installation

  • Install CUDA 10.1 / 10.2

  • Set up python3 environment from requirement.txt:

    pip3 install -r requirement.txt 
  • Install apex:

    git clone https://github.com/NVIDIA/apex
    cd apex
    export TORCH_CUDA_ARCH_LIST="6.0;6.1;6.2;7.0;7.5"  # set the target architecture manually, suggested in issue https://github.com/NVIDIA/apex/issues/605#issuecomment-554453001
    pip3 install -v --disable-pip-version-check --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
    cd ..
  • Install normalSpeed, a fast and light-weight normal map estimator:

    git clone https://github.com/hfutcgncas/normalSpeed.git
    cd normalSpeed/normalSpeed
    python3 setup.py install --user
    cd ..
  • Install tkinter through sudo apt install python3-tk

  • Compile RandLA-Net operators:

    cd ffb6d/models/RandLA/
    sh compile_op.sh

Code Structure

[Click to expand]
  • ffb6d
    • ffb6d/common.py: Common configuration of dataset and models, eg. dataset path, keypoints path, batch size and so on.
    • ffb6d/datasets
      • ffb6d/datasets/ycb
        • ffb6d/datasets/ycb/ycb_dataset.py: Data loader for YCB_Video dataset.
        • ffb6d/datasets/ycb/dataset_config
          • ffb6d/datasets/ycb/dataset_config/classes.txt: Object list of YCB_Video dataset.
          • ffb6d/datasets/ycb/dataset_config/radius.txt: Radius of each object in YCB_Video dataset.
          • ffb6d/datasets/ycb/dataset_config/train_data_list.txt: Training set of YCB_Video datset.
          • ffb6d/datasets/ycb/dataset_config/test_data_list.txt: Testing set of YCB_Video dataset.
        • ffb6d/datasets/ycb/ycb_kps
          • ffb6d/datasets/ycb/ycb_kps/{obj_name}_8_kps.txt: ORB-FPS 3D keypoints of an object in the object coordinate system.
          • ffb6d/datasets/ycb/ycb_kps/{obj_name}_corners.txt: 8 corners of the 3D bounding box of an object in the object coordinate system.
    • ffb6d/models
      • ffb6d/models/ffb6d.py: Network architecture of the proposed FFB6D.
      • ffb6d/models/cnn
        • ffb6d/models/cnn/extractors.py: Resnet backbones.
        • ffb6d/models/cnn/pspnet.py: PSPNet decoder.
        • ffb6d/models/cnn/ResNet_pretrained_mdl: Resnet pretraiend model weights.
      • ffb6d/models/loss.py: loss calculation for training of FFB6D model.
      • ffb6d/models/pytorch_utils.py: pytorch basic network modules.
      • ffb6d/models/RandLA/: pytorch version of RandLA-Net from RandLA-Net-pytorch
    • ffb6d/utils
      • ffb6d/utils/basic_utils.py: basic functions for data processing, visualization and so on.
      • ffb6d/utils/meanshift_pytorch.py: pytorch version of meanshift algorithm for 3D center point and keypoints voting.
      • ffb6d/utils/pvn3d_eval_utils_kpls.py: Object pose esitimation from predicted center/keypoints offset and evaluation metrics.
      • ffb6d/utils/ip_basic: Image Processing for Basic Depth Completion from ip_basic.
      • ffb6d/utils/dataset_tools
        • ffb6d/utils/dataset_tools/DSTOOL_README.md: README for dataset tools.
        • ffb6d/utils/dataset_tools/requirement.txt: Python3 requirement for dataset tools.
        • ffb6d/utils/dataset_tools/gen_obj_info.py: Generate object info, including SIFT-FPS 3d keypoints, radius etc.
        • ffb6d/utils/dataset_tools/rgbd_rnder_sift_kp3ds.py: Render rgbd images from mesh and extract textured 3d keypoints (SIFT/ORB).
        • ffb6d/utils/dataset_tools/utils.py: Basic utils for mesh, pose, image and system processing.
        • ffb6d/utils/dataset_tools/fps: Furthest point sampling algorithm.
        • ffb6d/utils/dataset_tools/example_mesh: Example mesh models.
    • ffb6d/train_ycb.py: Training & Evaluating code of FFB6D models for the YCB_Video dataset.
    • ffb6d/demo.py: Demo code for visualization.
    • ffb6d/train_ycb.sh: Bash scripts to start the training on the YCB_Video dataset.
    • ffb6d/test_ycb.sh: Bash scripts to start the testing on the YCB_Video dataset.
    • ffb6d/demo_ycb.sh: Bash scripts to start the demo on the YCB_Video_dataset.
    • ffb6d/train_log
      • ffb6d/train_log/ycb
        • ffb6d/train_log/ycb/checkpoints/: Storing trained checkpoints on the YCB_Video dataset.
        • ffb6d/train_log/ycb/eval_results/: Storing evaluated results on the YCB_Video_dataset.
        • ffb6d/train_log/ycb/train_info/: Training log on the YCB_Video_dataset.
  • requirement.txt: python3 environment requirements for pip3 install.
  • figs/: Images shown in README.

Datasets

  • YCB-Video: Download the YCB-Video Dataset from PoseCNN. Unzip it and link the unzippedYCB_Video_Dataset to ffb6d/datasets/ycb/YCB_Video_Dataset:

    ln -s path_to_unzipped_YCB_Video_Dataset ffb6d/datasets/ycb/

Training and evaluating

Training on the YCB-Video Dataset

  • Start training on the YCB-Video Dataset by:

    # commands in train_ycb.sh
    n_gpu=8  # number of gpu to use
    python3 -m torch.distributed.launch --nproc_per_node=$n_gpu train_ycb.py --gpus=$n_gpu

    The trained model checkpoints are stored in train_log/ycb/checkpoints/

    A tip for saving GPU memory: you can open the mixed precision mode to save GPU memory by passing parameters opt_level=O1 to train_ycb.py. The document for apex mixed precision trainnig can be found here.

Evaluating on the YCB-Video Dataset

  • Start evaluating by:
    # commands in test_ycb.sh
    tst_mdl=train_log/ycb/checkpoints/FFB6D_best.pth.tar  # checkpoint to test.
    python3 -m torch.distributed.launch --nproc_per_node=1 train_ycb.py --gpu '0' -eval_net -checkpoint $tst_mdl -test -test_pose # -debug
    You can evaluate different checkpoints by revising the tst_mdl to the path of your target model.
  • Pretrained model: We provide our pre-trained models on onedrive, here. Download the pre-trained model, move it to train_log/ycb/checkpoints/ and modify tst_mdl for testing.

Demo/visualization on the YCB-Video Dataset

  • After training your model or downloading the pre-trained model, you can start the demo by:
    # commands in demo_ycb.sh
    tst_mdl=train_log/ycb/checkpoints/FFB6D_best.pth.tar
    python3 -m demo -checkpoint $tst_mdl -dataset ycb
    The visualization results will be stored in train_log/ycb/eval_results/pose_vis.

Results

  • Evaluation result without any post refinement on the YCB-Video dataset:

    PoseCNN PointFusion DenseFusion PVN3D Our FFF6D
    ADDS ADD(S) ADDS ADD(S) ADDS ADD(S) ADDS ADD(S) ADDS ADD(S)
    ALL 75.8 59.9 83.9 - 91.2 82.9 95.5 91.8 96.6 92.7
  • Evaluation result on the LineMOD dataset:

    RGB RGB-D
    PVNet CDPN DPOD PointFusion DenseFusion(iterative) G2L-Net PVN3D FFF6D
    MEAN 86.3 89.9 95.2 73.7 94.3 98.7 99.4 99.7
  • Robustness upon occlusion:

  • Model parameters and speed on the LineMOD dataset (one object / frame) with one 2080Ti GPU:
    Parameters Network Forward Pose Estimation All time
    PVN3D 39.2M 170ms 20ms 190ms
    FFF6D
    33.8M 57ms 18ms 75ms

Adaptation to New Dataset

  • Install and generate required mesh info following DSTOOL_README.

  • Modify info of your new dataset in FFB6D/ffb6d/common.py

  • Write your dataset preprocess script following FFB6D/ffb6d/datasets/ycb/ycb_dataset.py. Note that you should modify or call the function that get your model info, such as 3D keypoints, center points, and radius properly.

  • (Very Important!) Visualize and check if you process the data properly, eg, the projected keypoints and center point, the semantic label of each point, etc. For example, you can visualize the projected center point (red point) and selected keypoints (orange points) as follow by running python3 -m datasets.ycb.ycb_dataset.

  • For inference, make sure that you load the 3D keypoints, center point, and radius of your objects in the object coordinate system properly in FFB6D/ffb6d/utils/pvn3d_eval_utils.py.

  • Check that all setting are modified properly by using the ground truth information for evaluation. The result should be high and close to 100 if everything is correct. For example, testing ground truth on the YCB_Video dataset by passing -test_gt parameters to train_ycb.py will get results higher than 99.99:

    tst_mdl=train_log/ycb/checkpoints/FFB6D_best.pth.tar
    python3 -m torch.distributed.launch --nproc_per_node=1 train_ycb.py --gpu '0' -eval_net -checkpoint $tst_mdl -test -test_pose -test_gt
    

To Do

  • Scripts and pre-trained models for LineMOD dataset.

License

Licensed under the MIT License.

Owner
Yisheng (Ethan) He
Ph.D. student @ HKUST
Yisheng (Ethan) He
Spatial-Location-Constraint-Prototype-Loss-for-Open-Set-Recognition

Spatial Location Constraint Prototype Loss for Open Set Recognition Official PyTorch implementation of "Spatial Location Constraint Prototype Loss for

Xia Ziheng 12 Jun 24, 2022
Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

Step by Step on how to create an vision recognition model using LOBE.ai, export the model and run the model in an Azure Function

El Bruno 3 Mar 30, 2022
Bayesian Inference Tools in Python

BayesPy Bayesian Inference Tools in Python Our goal is, given the discrete outcomes of events, estimate the distribution of categories. Using gradient

Max Sklar 99 Dec 14, 2022
A collection of semantic image segmentation models implemented in TensorFlow

A collection of semantic image segmentation models implemented in TensorFlow. Contains data-loaders for the generic and medical benchmark datasets.

bobby 16 Dec 06, 2019
SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals

SE-MSCNN: A Lightweight Multi-scaled Fusion Network for Sleep Apnea Detection Using Single-Lead ECG Signals Abstract Sleep apnea (SA) is a common slee

9 Dec 21, 2022
Self-supervised learning (SSL) is a method of machine learning

Self-supervised learning (SSL) is a method of machine learning. It learns from unlabeled sample data. It can be regarded as an intermediate form between supervised and unsupervised learning.

Ashish Patel 4 May 26, 2022
Object Depth via Motion and Detection Dataset

ODMD Dataset ODMD is the first dataset for learning Object Depth via Motion and Detection. ODMD training data are configurable and extensible, with ea

Brent Griffin 172 Dec 21, 2022
An educational AI robot based on NVIDIA Jetson Nano.

JetBot Looking for a quick way to get started with JetBot? Many third party kits are now available! JetBot is an open-source robot based on NVIDIA Jet

NVIDIA AI IOT 2.6k Dec 29, 2022
A computer vision pipeline to identify the "icons" in Christian paintings

Christian-Iconography A computer vision pipeline to identify the "icons" in Christian paintings. A bit about iconography. Iconography is related to id

Rishab Mudliar 3 Jul 30, 2022
Lenia - Mathematical Life Forms

For full version list, see Timeline in Lenia portal [2020-10-13] Update Python version with multi-kernel and multi-channel extensions (v3.4 LeniaNDK.p

Bert Chan 3.1k Dec 28, 2022
MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space

Update (20 Jan 2020): MODALS on text data is avialable MODALS MODALS: Modality-agnostic Automated Data Augmentation in the Latent Space Table of Conte

38 Dec 15, 2022
This repository contains the official MATLAB implementation of the TDA method for reverse image filtering

ReverseFilter TDA This repository contains the official MATLAB implementation of the TDA method for reverse image filtering proposed in the paper: "Re

Fergaletto 2 Dec 13, 2021
Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021)

Video Instance Segmentation using Inter-Frame Communication Transformers (NeurIPS 2021) Paper Video Instance Segmentation using Inter-Frame Communicat

Sukjun Hwang 81 Dec 29, 2022
Framework for training options with different attention mechanism and using them to solve downstream tasks.

Using Attention in HRL Framework for training options with different attention mechanism and using them to solve downstream tasks. Requirements GPU re

5 Nov 03, 2022
Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation

Improving Factual Completeness and Consistency of Image-to-text Radiology Report Generation The reference code of Improving Factual Completeness and C

46 Dec 15, 2022
Automatically replace ONNX's RandomNormal node with Constant node.

onnx-remove-random-normal This is a script to replace RandomNormal node with Constant node. Example Imagine that we have something ONNX model like the

Masashi Shibata 1 Dec 11, 2021
This is the repo for the paper `SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization'. (published in Bioinformatics'21)

SumGNN: Multi-typed Drug Interaction Prediction via Efficient Knowledge Graph Summarization This is the code for our paper ``SumGNN: Multi-typed Drug

Yue Yu 58 Dec 21, 2022
Minimalistic PyTorch training loop

Backbone for PyTorch training loop Will try to keep it minimalistic. pip install back from back import Bone Features Progress bar Checkpoints saving/l

Kashin 4 Jan 16, 2020
Files for a tutorial to train SegNet for road scenes using the CamVid dataset

SegNet and Bayesian SegNet Tutorial This repository contains all the files for you to complete the 'Getting Started with SegNet' and the 'Bayesian Seg

Alex Kendall 800 Dec 31, 2022
An image processing project uses Viola-jones technique to detect faces and then use SIFT algorithm for recognition.

Attendance_System An image processing project uses Viola-jones technique to detect faces and then use LPB algorithm for recognition. Face Detection Us

8 Jan 11, 2022