Agile SVG maker for python

Related tags

Deep LearningASVG
Overview

Agile SVG Maker

Need to draw hundreds of frames for a GIF? Need to change the style of all pictures in a PPT? Need to draw similar images with different parameters? Try ASVG!

Under construction, not so agile yet...

Basically aimed at academic illustrations.

Simple Example

from ASVG import *

# A 500x300 canvas
a = Axis((500, 300)) 

# Draw a rectangle on a, at level 1, from (0,0) to (200,100)
# With (5,5) round corner, fill with red color.
rect(a, 1, 0, 0, 200, 100, 5, 5, fill='red')

# Draw a circle on a, at level 3
# Centered (50,50) with 50 radius, fill with blue color.
circle(a, 3, 50, 50, 50, fill='blue')

# Draw this picture to example.svg
draw(a, "example.svg")

Parameterized Sub-image

def labeledRect(
        level: int,
        width: float,
        height: float,
        s: Union[str, TextRepresent],
        font_size: float,
        textShift: Tuple[float, float] = (0, 0),
        font: str = "Arial",
        rx: float = 0,
        ry: float = 0,
        margin: float = 5,
        attrib: Attrib = Attrib(),
        rectAttrib: Attrib = Attrib(),
        textAttrib: Attrib = Attrib(),
        **kwargs):
    e = ComposedElement((width + 2 * margin, height + 2 * margin),
                        level, attrib + kwargs)
    rect(e, 0, margin, margin, width, height, rx, ry, attrib=rectAttrib)

    textX = width / 2 + textShift[0] + margin
    textY = height / 2 + textShift[1] + (font_size / 2) + margin
    text(e, 1, s, textX, textY, font_size, font, attrib=textAttrib)
    return e

a = Axis((300,200))
a.addElement(labeledRect(...))

Nested Canvas

Canvas and Axis

Create a canvas axis with Axis(size, viewport) size=(width, height) is the physical size of the canvas in pixels. viewport=(x, y) is the logical size of the axis, by default its the same of the physical size.

# A 1600x900 canvas, axis range [0,1600)x[0,900)
a = Axis((1600, 900))

# A 1600x900 canva, with normalized axis range[0,1),[0,1)
b = Axis((1600, 900), (1.0, 1.0))

ComposedElement

A composed element is a sub-image.

ComposedElement(size, level, attrib) size=(width, height): the size of the axis of this element. level: the higher the level is, the fronter the composed element is. attrib: the common attributes of this element

Add a composed element into the big canvas:axis.addElement(element, shift) shift=(x,y) is the displacement of the element in the outer axis.

A composed element can have other composed elements as sub-pictures: element.addElement(subElement, shift)

Basic Elements

The basic element comes from SVG. Basicly, every element needs a axis and a level argument. axis can be a Axis or ComposedElement. The bigger the level is, the fronter the element is. level is only comparable when two elements are under the same axis.

# Rectangle
rect(
    axis: Union[core.Axis, core.ComposedElement],
    level: int,
    x: float, # top left
    y: float,
    width: float,
    height: float,
    rx: float = 0.0, # round corner radius
    ry: float = 0.0,
    attrib: core.Attrib = core.Attrib(),
    **kwargs
)
# Circle
circle(
    axis: Union[core.Axis, core.ComposedElement],
    level: int,
    cx: float, # center
    cy: float,
    r: float, # radius
    attrib: core.Attrib = core.Attrib(),
    **kwargs
)
# Ellipse
ellipse(
    axis: Union[core.Axis, core.ComposedElement],
    level: int,
    cx: float, # center
    cy: float,
    rx: float, # radius
    ry: float,
    attrib: core.Attrib = core.Attrib(),
    **kwargs
)
# Straight line
line(
    axis: Union[core.Axis, core.ComposedElement],
    level: int,
    x1: float, # Start
    y1: float,
    x2: float, # End
    y2: float,
    attrib: core.Attrib = core.Attrib(),
    **kwargs
)
# Polyline
polyline(
    axis: Union[core.Axis, core.ComposedElement],
    level: int,
    points: List[Tuple[float, float]],
    attrib: core.Attrib = core.Attrib(),
    **kwargs
)
# Polygon
polygon(
    axis: Union[core.Axis, core.ComposedElement],
    level: int,
    points: List[Tuple[float, float]],
    attrib: core.Attrib = core.Attrib(),
    **kwargs
)
# Path
path(
    axis: Union[core.Axis, core.ComposedElement],
    level: int,
    d: PathD,
    attrib: core.Attrib = core.Attrib(),
    **kwargs
)

PathD is a sequence of path descriptions, the actions is like SVG's path element. View Path tutorial We use ?To() for captial letters and ?For() for lower-case letters. close() and open() is for closing or opening the path. Example:

d = PathD()
d.moveTo(100,100)
d.hlineFor(90)
d.close()
# Equivilent: d = PathD(["M 80 80", "h 90",  "Z"])

path(a, 0, d)

Text

text(
    axis: Union[core.Axis, core.ComposedElement],
    level: int,
    s: Union[str, TextRepresent],
    x: float,
    y: float,
    fontSize: int,
    font: str = "Arial",
    anchor: str = "middle",
    attrib: core.Attrib = core.Attrib(),
    **kwargs
)

anchor is where (x,y) is in the text. Can be either start, middle or end.

TextRepresent means formatted text. Normal string with \n in it will be converted into multilines. You can use TextSpan to add some attributes to a span of text.

Examples:

text(
    a, 10,
    "Hello\n???" + \
    TextSpan("!!!\n", fill='#00ffff', font_size=25) +\
    "???\nabcdef",
    30, 30, 20, anchor="start")

Arrow

# Straight arrow
arrow(
    axis: Union[core.Axis, core.ComposedElement],
    level: int,
    x: float, # Position of the tip
    y: float,
    fromX: float, # Position of the other end
    fromY: float,
    tipSize: float = 10.0,
    tipAngle: float = 60.0,
    tipFilled: bool = True,
    **kwargs
)
# Polyline arrow
polyArrow(
    axis: Union[core.Axis, core.ComposedElement],
    level: int,
    points: List[Tuple[float, float]],
    tipSize: float = 10.0,
    tipAngle: float = 60.0,
    tipFilled: bool = True,
    **kwargs
)

Attributes

Attributes is for customizing the style of the elements.

myStyle = Attrib(
    fill = "#1bcd20",
    stroke = "black",
    stroke_width = "1pt"
)

alertStype = myStyle.copy()
alertStype.fill = "#ff0000"

rect(..., attrib=myStyle)
circle(..., attrib=alertStyle)

The name of the attribute are the same as in SVG elements, except use underline _ instead of dash -

Attributs of ComposedElement applies on <group> element.

For convinent, you can directly write some attributes in **kwargs.

rect(..., fill="red")

# Equivilient
rect(..., attrib=Attrib(fill="red))
Owner
SemiWaker
A student in Peking University Department of Electronic Engineering and Computer Science, Major in Artificial Intelligence.
SemiWaker
MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition

MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition Paper: MinkLoc++: Lidar and Monocular Image Fusion for Place Recognition accepted fo

64 Dec 18, 2022
Auto-Encoding Score Distribution Regression for Action Quality Assessment

DAE-AQA It is an open source program reference to paper Auto-Encoding Score Distribution Regression for Action Quality Assessment. 1.Introduction DAE

13 Nov 16, 2022
MultiMix: Sparingly Supervised, Extreme Multitask Learning From Medical Images (ISBI 2021, MELBA 2021)

MultiMix This repository contains the implementation of MultiMix. Our publications for this project are listed below: "MultiMix: Sparingly Supervised,

Ayaan Haque 27 Dec 22, 2022
PyTorch implementation for Score-Based Generative Modeling through Stochastic Differential Equations (ICLR 2021, Oral)

Score-Based Generative Modeling through Stochastic Differential Equations This repo contains a PyTorch implementation for the paper Score-Based Genera

Yang Song 757 Jan 04, 2023
Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces"

Code Impementation for "Mold into a Graph: Efficient Bayesian Optimization over Mixed Spaces" This repo contains the implementation of GEBO algorithm.

Jaeyeon Ahn 2 Mar 22, 2022
🔥 Cannlytics-powered artificial intelligence 🤖

Cannlytics AI 🔥 Cannlytics-powered artificial intelligence 🤖 🏗️ Installation 🏃‍♀️ Quickstart 🧱 Development 🦾 Automation 💸 Support 🏛️ License ?

Cannlytics 3 Nov 11, 2022
Motion and Shape Capture from Sparse Markers

MoSh++ This repository contains the official chumpy implementation of mocap body solver used for AMASS: AMASS: Archive of Motion Capture as Surface Sh

Nima Ghorbani 135 Dec 23, 2022
Source Code For Template-Based Named Entity Recognition Using BART

Template-Based NER Source Code For Template-Based Named Entity Recognition Using BART Training Training train.py Inference inference.py Corpus ATIS (h

174 Dec 19, 2022
Code needed to reproduce the examples found in "The Temporal Robustness of Stochastic Signals"

The Temporal Robustness of Stochastic Signals Code needed to reproduce the examples found in "The Temporal Robustness of Stochastic Signals" Case stud

0 Oct 28, 2021
SOLOv2 on onnx & tensorRT

SOLOv2.tensorRT: NOTE: code based on WXinlong/SOLO add support to TensorRT inference onnxruntime tensorRT full_dims and dynamic shape postprocess with

47 Nov 26, 2022
A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation

Segnet is deep fully convolutional neural network architecture for semantic pixel-wise segmentation. This is implementation of http://arxiv.org/pdf/15

Pradyumna Reddy Chinthala 190 Dec 15, 2022
Code for "Learning Canonical Representations for Scene Graph to Image Generation", Herzig & Bar et al., ECCV2020

Learning Canonical Representations for Scene Graph to Image Generation (ECCV 2020) Roei Herzig*, Amir Bar*, Huijuan Xu, Gal Chechik, Trevor Darrell, A

roei_herzig 24 Jul 07, 2022
Automated Melanoma Recognition in Dermoscopy Images via Very Deep Residual Networks

Introduction This repository contains the modified caffe library and network architectures for our paper "Automated Melanoma Recognition in Dermoscopy

Lequan Yu 47 Nov 24, 2022
Official code for "End-to-End Optimization of Scene Layout" -- including VAE, Diff Render, SPADE for colorization (CVPR 2020 Oral)

End-to-End Optimization of Scene Layout Code release for: End-to-End Optimization of Scene Layout CVPR 2020 (Oral) Project site, Bibtex For help conta

Andrew Luo 41 Dec 09, 2022
An implementation of "Learning human behaviors from motion capture by adversarial imitation"

Merel-MoCap-GAIL An implementation of Merel et al.'s paper on generative adversarial imitation learning (GAIL) using motion capture (MoCap) data: Lear

Yu-Wei Chao 34 Nov 12, 2022
Parameter Efficient Deep Probabilistic Forecasting

PEDPF Parameter Efficient Deep Probabilistic Forecasting (PEDPF) is a repository containing code to run experiments for several deep learning based pr

Olivier Sprangers 10 Jun 13, 2022
TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1).

M1-tensorflow-benchmark TensorFlow (v2.7.0) benchmark results on an M1 Macbook Air 2020 laptop (macOS Monterey v12.1). I was initially testing if Tens

particle 2 Jan 05, 2022
Realistic lighting in ursina!

Ursina Lighting Realistic lighting in ursina! If you want to have realistic lighting in ursina, import the UrsinaLighting.py in your project and use t

17 Jul 07, 2022
Tutorial for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop

Workshop Advantech Jetson Nano This tutorial has been designed for the PERFECTING FACTORY 5.0 WITH EDGE-POWERED AI workshop in collaboration with Adva

Edge Impulse 18 Nov 22, 2022
SwinIR: Image Restoration Using Swin Transformer

SwinIR: Image Restoration Using Swin Transformer This repository is the official PyTorch implementation of SwinIR: Image Restoration Using Shifted Win

Jingyun Liang 2.4k Jan 05, 2023