Agile SVG maker for python

Related tags

Deep LearningASVG
Overview

Agile SVG Maker

Need to draw hundreds of frames for a GIF? Need to change the style of all pictures in a PPT? Need to draw similar images with different parameters? Try ASVG!

Under construction, not so agile yet...

Basically aimed at academic illustrations.

Simple Example

from ASVG import *

# A 500x300 canvas
a = Axis((500, 300)) 

# Draw a rectangle on a, at level 1, from (0,0) to (200,100)
# With (5,5) round corner, fill with red color.
rect(a, 1, 0, 0, 200, 100, 5, 5, fill='red')

# Draw a circle on a, at level 3
# Centered (50,50) with 50 radius, fill with blue color.
circle(a, 3, 50, 50, 50, fill='blue')

# Draw this picture to example.svg
draw(a, "example.svg")

Parameterized Sub-image

def labeledRect(
        level: int,
        width: float,
        height: float,
        s: Union[str, TextRepresent],
        font_size: float,
        textShift: Tuple[float, float] = (0, 0),
        font: str = "Arial",
        rx: float = 0,
        ry: float = 0,
        margin: float = 5,
        attrib: Attrib = Attrib(),
        rectAttrib: Attrib = Attrib(),
        textAttrib: Attrib = Attrib(),
        **kwargs):
    e = ComposedElement((width + 2 * margin, height + 2 * margin),
                        level, attrib + kwargs)
    rect(e, 0, margin, margin, width, height, rx, ry, attrib=rectAttrib)

    textX = width / 2 + textShift[0] + margin
    textY = height / 2 + textShift[1] + (font_size / 2) + margin
    text(e, 1, s, textX, textY, font_size, font, attrib=textAttrib)
    return e

a = Axis((300,200))
a.addElement(labeledRect(...))

Nested Canvas

Canvas and Axis

Create a canvas axis with Axis(size, viewport) size=(width, height) is the physical size of the canvas in pixels. viewport=(x, y) is the logical size of the axis, by default its the same of the physical size.

# A 1600x900 canvas, axis range [0,1600)x[0,900)
a = Axis((1600, 900))

# A 1600x900 canva, with normalized axis range[0,1),[0,1)
b = Axis((1600, 900), (1.0, 1.0))

ComposedElement

A composed element is a sub-image.

ComposedElement(size, level, attrib) size=(width, height): the size of the axis of this element. level: the higher the level is, the fronter the composed element is. attrib: the common attributes of this element

Add a composed element into the big canvas:axis.addElement(element, shift) shift=(x,y) is the displacement of the element in the outer axis.

A composed element can have other composed elements as sub-pictures: element.addElement(subElement, shift)

Basic Elements

The basic element comes from SVG. Basicly, every element needs a axis and a level argument. axis can be a Axis or ComposedElement. The bigger the level is, the fronter the element is. level is only comparable when two elements are under the same axis.

# Rectangle
rect(
    axis: Union[core.Axis, core.ComposedElement],
    level: int,
    x: float, # top left
    y: float,
    width: float,
    height: float,
    rx: float = 0.0, # round corner radius
    ry: float = 0.0,
    attrib: core.Attrib = core.Attrib(),
    **kwargs
)
# Circle
circle(
    axis: Union[core.Axis, core.ComposedElement],
    level: int,
    cx: float, # center
    cy: float,
    r: float, # radius
    attrib: core.Attrib = core.Attrib(),
    **kwargs
)
# Ellipse
ellipse(
    axis: Union[core.Axis, core.ComposedElement],
    level: int,
    cx: float, # center
    cy: float,
    rx: float, # radius
    ry: float,
    attrib: core.Attrib = core.Attrib(),
    **kwargs
)
# Straight line
line(
    axis: Union[core.Axis, core.ComposedElement],
    level: int,
    x1: float, # Start
    y1: float,
    x2: float, # End
    y2: float,
    attrib: core.Attrib = core.Attrib(),
    **kwargs
)
# Polyline
polyline(
    axis: Union[core.Axis, core.ComposedElement],
    level: int,
    points: List[Tuple[float, float]],
    attrib: core.Attrib = core.Attrib(),
    **kwargs
)
# Polygon
polygon(
    axis: Union[core.Axis, core.ComposedElement],
    level: int,
    points: List[Tuple[float, float]],
    attrib: core.Attrib = core.Attrib(),
    **kwargs
)
# Path
path(
    axis: Union[core.Axis, core.ComposedElement],
    level: int,
    d: PathD,
    attrib: core.Attrib = core.Attrib(),
    **kwargs
)

PathD is a sequence of path descriptions, the actions is like SVG's path element. View Path tutorial We use ?To() for captial letters and ?For() for lower-case letters. close() and open() is for closing or opening the path. Example:

d = PathD()
d.moveTo(100,100)
d.hlineFor(90)
d.close()
# Equivilent: d = PathD(["M 80 80", "h 90",  "Z"])

path(a, 0, d)

Text

text(
    axis: Union[core.Axis, core.ComposedElement],
    level: int,
    s: Union[str, TextRepresent],
    x: float,
    y: float,
    fontSize: int,
    font: str = "Arial",
    anchor: str = "middle",
    attrib: core.Attrib = core.Attrib(),
    **kwargs
)

anchor is where (x,y) is in the text. Can be either start, middle or end.

TextRepresent means formatted text. Normal string with \n in it will be converted into multilines. You can use TextSpan to add some attributes to a span of text.

Examples:

text(
    a, 10,
    "Hello\n???" + \
    TextSpan("!!!\n", fill='#00ffff', font_size=25) +\
    "???\nabcdef",
    30, 30, 20, anchor="start")

Arrow

# Straight arrow
arrow(
    axis: Union[core.Axis, core.ComposedElement],
    level: int,
    x: float, # Position of the tip
    y: float,
    fromX: float, # Position of the other end
    fromY: float,
    tipSize: float = 10.0,
    tipAngle: float = 60.0,
    tipFilled: bool = True,
    **kwargs
)
# Polyline arrow
polyArrow(
    axis: Union[core.Axis, core.ComposedElement],
    level: int,
    points: List[Tuple[float, float]],
    tipSize: float = 10.0,
    tipAngle: float = 60.0,
    tipFilled: bool = True,
    **kwargs
)

Attributes

Attributes is for customizing the style of the elements.

myStyle = Attrib(
    fill = "#1bcd20",
    stroke = "black",
    stroke_width = "1pt"
)

alertStype = myStyle.copy()
alertStype.fill = "#ff0000"

rect(..., attrib=myStyle)
circle(..., attrib=alertStyle)

The name of the attribute are the same as in SVG elements, except use underline _ instead of dash -

Attributs of ComposedElement applies on <group> element.

For convinent, you can directly write some attributes in **kwargs.

rect(..., fill="red")

# Equivilient
rect(..., attrib=Attrib(fill="red))
Owner
SemiWaker
A student in Peking University Department of Electronic Engineering and Computer Science, Major in Artificial Intelligence.
SemiWaker
[CVPR 2022] Structured Sparse R-CNN for Direct Scene Graph Generation

Structured Sparse R-CNN for Direct Scene Graph Generation Our paper Structured Sparse R-CNN for Direct Scene Graph Generation has been accepted by CVP

Multimedia Computing Group, Nanjing University 44 Dec 23, 2022
Code for Boundary-Aware Segmentation Network for Mobile and Web Applications

BASNet Boundary-Aware Segmentation Network for Mobile and Web Applications This repository contain implementation of BASNet in tensorflow/keras. comme

Hamid Ali 8 Nov 24, 2022
Very Deep Convolutional Networks for Large-Scale Image Recognition

pytorch-vgg Some scripts to convert the VGG-16 and VGG-19 models [1] from Caffe to PyTorch. The converted models can be used with the PyTorch model zo

Justin Johnson 217 Dec 05, 2022
An self sufficient AI that crawls the web to learn how to generate art from keywords

Roxx-IO - The Smart Artist AI! TO DO / IDEAS Implement Web-Scraping Functionality Figure out a less annoying (and an off button for it) text to speech

Tatz 5 Mar 21, 2022
A quick recipe to learn all about Transformers

Transformers have accelerated the development of new techniques and models for natural language processing (NLP) tasks.

DAIR.AI 772 Dec 31, 2022
State of the art Semantic Sentence Embeddings

Contrastive Tension State of the art Semantic Sentence Embeddings Published Paper · Huggingface Models · Report Bug Overview This is the official code

Fredrik Carlsson 88 Dec 30, 2022
TAug :: Time Series Data Augmentation using Deep Generative Models

TAug :: Time Series Data Augmentation using Deep Generative Models Note!!! The package is under development so be careful for using in production! Fea

35 Dec 06, 2022
10th place solution for Google Smartphone Decimeter Challenge at kaggle.

Under refactoring 10th place solution for Google Smartphone Decimeter Challenge at kaggle. Google Smartphone Decimeter Challenge Global Navigation Sat

12 Oct 25, 2022
Official implementation for: Blended Diffusion for Text-driven Editing of Natural Images.

Blended Diffusion for Text-driven Editing of Natural Images Blended Diffusion for Text-driven Editing of Natural Images Omri Avrahami, Dani Lischinski

328 Dec 30, 2022
A scikit-learn compatible neural network library that wraps PyTorch

A scikit-learn compatible neural network library that wraps PyTorch. Resources Documentation Source Code Examples To see more elaborate examples, look

4.9k Jan 03, 2023
A collection of implementations of deep domain adaptation algorithms

Deep Transfer Learning on PyTorch This is a PyTorch library for deep transfer learning. We divide the code into two aspects: Single-source Unsupervise

Yongchun Zhu 647 Jan 03, 2023
Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy Gradients

LSF-SAC Pytorch implementations of the paper Value Functions Factorization with Latent State Information Sharing in Decentralized Multi-Agent Policy G

Hanhan 2 Aug 14, 2022
Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation'

OD-Rec Codes for SIGIR'22 Paper 'On-Device Next-Item Recommendation with Self-Supervised Knowledge Distillation' Paper, saved teacher models and Andro

Xin Xia 11 Nov 22, 2022
[ICML 2020] Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Control

PG-MORL This repository contains the implementation for the paper Prediction-Guided Multi-Objective Reinforcement Learning for Continuous Robot Contro

MIT Graphics Group 65 Jan 07, 2023
Pytorch based library to rank predicted bounding boxes using text/image user's prompts.

pytorch_clip_bbox: Implementation of the CLIP guided bbox ranking for Object Detection. Pytorch based library to rank predicted bounding boxes using t

Sergei Belousov 50 Nov 27, 2022
Pytorch Code for "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation"

Medical-Transformer Pytorch Code for the paper "Medical Transformer: Gated Axial-Attention for Medical Image Segmentation" About this repo: This repo

Jeya Maria Jose 615 Dec 25, 2022
Indices Matter: Learning to Index for Deep Image Matting

IndexNet Matting This repository includes the official implementation of IndexNet Matting for deep image matting, presented in our paper: Indices Matt

Hao Lu 357 Nov 26, 2022
ImageNet Adversarial Image Evaluation

ImageNet Adversarial Image Evaluation This repository contains the code and some materials used in the experimental work presented in the following pa

Utku Ozbulak 11 Dec 26, 2022
PyTorch implementation of the wavelet analysis from Torrence & Compo

Continuous Wavelet Transforms in PyTorch This is a PyTorch implementation for the wavelet analysis outlined in Torrence and Compo (BAMS, 1998). The co

Tom Runia 262 Dec 21, 2022
Massively parallel Monte Carlo diffusion MR simulator written in Python.

Disimpy Disimpy is a Python package for generating simulated diffusion-weighted MR signals that can be useful in the development and validation of dat

Leevi 16 Nov 11, 2022