ImageNet Adversarial Image Evaluation

Overview

ImageNet Adversarial Image Evaluation

This repository contains the code and some materials used in the experimental work presented in the following papers:

[1] Selection of Source Images Heavily Influences Effectiveness of Adversarial Attacks
British Machine Vision Conference (BMVC), 2021.

[2] Evaluating Adversarial Attacks on ImageNet: A Reality Check on Misclassification Classes
Conference on Neural Information Processing Systems (NeurIPS), Workshop on ImageNet: Past, Present, and Future, 2021.

Fragile Source images

Paper [1] TLDR: A number of source images easily become adversarial examples with relatively low perturbation levels and achieve high model-to-model transferability successes compared to other source images.

In src folder, we shared a number of cleaned source code that can be used to generate the figures used in the paper with the usage of adversarial examples generated with PGD, CW, and MI-FGSM. You can download the data here. Below are some of the visualizations used in the paper and their descriptions.

Model-to-model transferability matrix

Model-to-model transferability matrix can be generated with the usage of vis_m2m_transferability.py. This visualization has two modes, an overview one where only the transfer success percentage is shown and a detailed view where both the absolute amount and the percentage is shown. The visualization for this experiment is given below:

Source image transferability count

In the paper [1], we counted the model-to-model transferability of adversarial examples as they are generated from source images. This experiment can be reproduced with vis_transferability_cnt.py. The visualization for this experiment is given below:

Perturbation distribution

In the paper [1], we counted the model-to-model transferability of adversarial examples as they are generated from source images. This experiment can be reproduced with vis_transferability_cnt.py. The visualization for this experiment is given below:

Untargeted misclassification for adversarial examples

Paper [2] TLDR: Adversarial examples that achieve untargeted model-to-model transferability are often misclassified into categories that are similar to the category of their origin.

We share the imagenet hierarchy used in the paper in the dictionary format in imagenet_hier.py.

Citation

If you find the code in this repository useful for your research, consider citing our paper. Also, feel free to use any visuals available here.

@inproceedings{ozbulak2021selection,
    title={Selection of Source Images Heavily Influences the Effectiveness of Adversarial Attacks},
    author={Ozbulak, Utku and Timothy Anzaku, Esla and De Neve, Wesley and Van Messem, Arnout},
    booktitle={British Machine vision Conference (BMVC)},
    year={2021}
}

@inproceedings{ozbulak2021evaluating,
  title={Evaluating Adversarial Attacks on ImageNet: A Reality Check on Misclassification Classes},
  author={Ozbulak, Utku and Pintor, Maura and Van Messem, Arnout and De Neve, Wesley},
  booktitle={NeurIPS 2021 Workshop on ImageNet: Past, Present, and Future},
  year={2021}
}

Requirements

python > 3.5
torch >= 0.4.0
torchvision >= 0.1.9
numpy >= 1.13.0
PIL >= 1.1.7
Owner
Utku Ozbulak
Fourth-year doctoral student at Ghent University. Located in Ghent University Global Campus, South Korea.
Utku Ozbulak
Model serving at scale

Run inference at scale Cortex is an open source platform for large-scale machine learning inference workloads. Workloads Realtime APIs - respond to pr

Cortex Labs 7.9k Jan 06, 2023
Code to accompany the paper "Finding Bipartite Components in Hypergraphs", which is published in NeurIPS'21.

Finding Bipartite Components in Hypergraphs This repository contains code to accompany the paper "Finding Bipartite Components in Hypergraphs", publis

Peter Macgregor 5 May 06, 2022
PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identification in Symbolic Scores.

Symbolic Melody Identification This repository is an unofficial PyTorch implementation of the paper:A Convolutional Approach to Melody Line Identifica

Sophia Y. Chou 3 Feb 21, 2022
Code and data of the Fine-Grained R2R Dataset proposed in paper Sub-Instruction Aware Vision-and-Language Navigation

Fine-Grained R2R Code and data of the Fine-Grained R2R Dataset proposed in the EMNLP2020 paper Sub-Instruction Aware Vision-and-Language Navigation. C

YicongHong 34 Nov 15, 2022
PyTorch implementation of the Deep SLDA method from our CVPRW-2020 paper "Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis"

Lifelong Machine Learning with Deep Streaming Linear Discriminant Analysis This is a PyTorch implementation of the Deep Streaming Linear Discriminant

Tyler Hayes 41 Dec 25, 2022
A python package for generating, analyzing and visualizing building shadows

pybdshadow Introduction pybdshadow is a python package for generating, analyzing and visualizing building shadows from large scale building geographic

Qing Yu 13 Nov 30, 2022
Instance-conditional Knowledge Distillation for Object Detection

Instance-conditional Knowledge Distillation for Object Detection This is a MegEngine implementation of the paper "Instance-conditional Knowledge Disti

MEGVII Research 47 Nov 17, 2022
OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network

Stock Price Prediction of Apple Inc. Using Recurrent Neural Network OHLC Average Prediction of Apple Inc. Using LSTM Recurrent Neural Network Dataset:

Nouroz Rahman 410 Jan 05, 2023
Spectral Tensor Train Parameterization of Deep Learning Layers

Spectral Tensor Train Parameterization of Deep Learning Layers This repository is the official implementation of our AISTATS 2021 paper titled "Spectr

Anton Obukhov 12 Oct 23, 2022
PyTorch implementation of InstaGAN: Instance-aware Image-to-Image Translation

InstaGAN: Instance-aware Image-to-Image Translation Warning: This repo contains a model which has potential ethical concerns. Remark that the task of

Sangwoo Mo 827 Dec 29, 2022
Code of Adverse Weather Image Translation with Asymmetric and Uncertainty aware GAN

Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN) Official Tensorflow implementation of Adverse Weather Image Trans

Jeong-gi Kwak 36 Dec 26, 2022
[SIGGRAPH Asia 2019] Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning

AGIS-Net Introduction This is the official PyTorch implementation of the Artistic Glyph Image Synthesis via One-Stage Few-Shot Learning. paper | suppl

Yue Gao 102 Jan 02, 2023
Style transfer between images was performed using the VGG19 model

Style transfer between images was performed using the VGG19 model. The necessary codes, libraries and all other information of this project are available below

Onur yılmaz 2 May 09, 2022
Human segmentation models, training/inference code, and trained weights, implemented in PyTorch

Human-Segmentation-PyTorch Human segmentation models, training/inference code, and trained weights, implemented in PyTorch. Supported networks UNet: b

Thuy Ng 474 Dec 19, 2022
PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners

Masked Autoencoders: A PyTorch Implementation This is a PyTorch/GPU re-implementation of the paper Masked Autoencoders Are Scalable Vision Learners: @

Meta Research 4.8k Jan 04, 2023
Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification

Pytorch Implementation of Adversarial Deep Network Embedding for Cross-Network Node Classification (ACDNE) This is a pytorch implementation of the Adv

陈志豪 8 Oct 13, 2022
Awesome Long-Tailed Learning

Awesome Long-Tailed Learning This repo pays specially attention to the long-tailed distribution, where labels follow a long-tailed or power-law distri

Stomach_ache 284 Jan 06, 2023
ObsPy: A Python Toolbox for seismology/seismological observatories.

ObsPy is an open-source project dedicated to provide a Python framework for processing seismological data. It provides parsers for common file formats

ObsPy 979 Jan 07, 2023
Repository accompanying the "Sign Pose-based Transformer for Word-level Sign Language Recognition" paper

by Matyáš Boháček and Marek Hrúz, University of West Bohemia Should you have any questions or inquiries, feel free to contact us here. Repository acco

Matyáš Boháček 30 Dec 30, 2022
toroidal - a lightweight transformer library for PyTorch

toroidal - a lightweight transformer library for PyTorch Toroidal transformers are of smaller size and lower weight than the more common E-I types. Th

MathInf GmbH 64 Jan 07, 2023