Code of Adverse Weather Image Translation with Asymmetric and Uncertainty aware GAN

Related tags

Deep LearningAU-GAN
Overview

Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN)

Official Tensorflow implementation of Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN (AU-GAN)
Jeong-gi Kwak, Youngsaeng Jin, Yuanming Li, Dongsik Yoon, Donghyeon Kim and Hanseok Ko
British Machine Vision Conference (BMVC), 2021

Intro

Night → Day (BDD100K)

Rainy night → Day (Alderdey)


Architecture

Our generator has asymmetric structure for editing day→night and night→day. Please refer our paper for details

Envs

git clone https://github.com/jgkwak95/AU-GAN.git
cd AU-GAN

# Create virtual environment
conda create -y --name augan python=3.6.7
conda activate augan

conda install tensorflow-gpu==1.14.0   # Tensorflow 1.14
pip install --no-cache-dir -r requirements.txt

Preparing datasets

Night → Day
Berkeley DeepDrive dataset contains 100,000 high resolution images of the urban roads for autonomous driving.

Rainy night → Day
Alderley dataset consists of images of two domains, rainy night and daytime. It was collected while driving the same route in each weather environment.

Please download datasets and then construct them following ForkGAN

Training

# Alderley (256x256)
python main_uncer.py --dataset_dir alderley
                     --phase train
                     --experiment_name alderley_exp
                     --batch_size 8 
                     --load_size 286 
                     --fine_size 256 
                     --use_uncertainty True
# BDD100k (512x512)
python main_uncer.py --dataset_dir bdd100k 
                     --phase train
                     --experiment_name bdd_exp
                     --batch_size 4 
                     --load_size 572 
                     --fine_size 512 
                     --use_uncertainty True

Test

# Alderley (256x256)
python main_uncer.py --dataset_dir alderley
                     --phase test
                     --experiment_name alderley_exp
                     --batch_size 1 
                     --load_size 286 
                     --fine_size 256 
                    
# BDD100k (512x512)
python main_uncer.py --dataset_dir bdd100k
                     --phase test
                     --experiment_name bdd_exp
                     --batch_size 1 
                     --load_size 572 
                     --fine_size 512 
                    

Additional results

More results in paper and supplementary

Uncertainty map

Citation

If our code is helpful your research, please cite our paper:

@InProceedings{kwak_adverse_2021},
  author = {Kwak, Jeong-gi and Jin, Youngsaeng and Li, Yuanming and Yoon, Dongsik and Kim, Donghyeon and Ko, Hanseok},
  title = {Adverse Weather Image Translation with Asymmetric and Uncertainty-aware GAN},
  booktitle = {British Conference of Computer Vision (BMVC)},
  month = {November},
  year = {2021}
}

Acknowledgments

Our code is bulided upon the ForkGAN implementation.

Owner
Jeong-gi Kwak
Jeong-gi Kwak
Code for the paper: On Pathologies in KL-Regularized Reinforcement Learning from Expert Demonstrations

Non-Parametric Prior Actor-Critic (N-PPAC) This repository contains the code for On Pathologies in KL-Regularized Reinforcement Learning from Expert D

Cong Lu 5 May 13, 2022
Create UIs for prototyping your machine learning model in 3 minutes

Note: We just launched Hosted, where anyone can upload their interface for permanent hosting. Check it out! Welcome to Gradio Quickly create customiza

Gradio 11.7k Jan 07, 2023
The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for LiDAR-Based Place Recognition.

OverlapTransformer The code for our paper submitted to RAL/IROS 2022: OverlapTransformer: An Efficient and Rotation-Invariant Transformer Network for

HAOMO.AI 136 Jan 03, 2023
以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的斗地主ai

ddz-ai 介绍 斗地主是一种扑克游戏。游戏最少由3个玩家进行,用一副54张牌(连鬼牌),其中一方为地主,其余两家为另一方,双方对战,先出完牌的一方获胜。 ddz-ai以孤立语假设和宽度优先搜索为基础,构建了一种多通道堆叠注意力Transformer结构的系统,使其经过大量训练后,能在实际游戏中获

freefuiiismyname 88 May 15, 2022
Multi-Anchor Active Domain Adaptation for Semantic Segmentation (ICCV 2021 Oral)

Multi-Anchor Active Domain Adaptation for Semantic Segmentation Munan Ning*, Donghuan Lu*, Dong Wei†, Cheng Bian, Chenglang Yuan, Shuang Yu, Kai Ma, Y

Munan Ning 36 Dec 07, 2022
Fast, flexible and easy to use probabilistic modelling in Python.

Please consider citing the JMLR-MLOSS Manuscript if you've used pomegranate in your academic work! pomegranate is a package for building probabilistic

Jacob Schreiber 3k Dec 29, 2022
Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5)

YOLOv5-GUI 🎉 YOLOv5算法(ver.6及ver.5)的Qt-GUI实现 🎉 Qt-GUI implementation of the YOLOv5 algorithm (ver.6 and ver.5). 基于YOLOv5的v5版本和v6版本及Javacr大佬的UI逻辑进行编写

EricFang 12 Dec 28, 2022
Deep Halftoning with Reversible Binary Pattern

Deep Halftoning with Reversible Binary Pattern ICCV Paper | Project Website | BibTex Overview Existing halftoning algorithms usually drop colors and f

Menghan Xia 17 Nov 22, 2022
Official Implementation of "Learning Disentangled Behavior Embeddings"

DBE: Disentangled-Behavior-Embedding Official implementation of Learning Disentangled Behavior Embeddings (NeurIPS 2021). Environment requirement The

Mishne Lab 12 Sep 28, 2022
Semantic graph parser based on Categorial grammars

Lambekseq "Everyone who failed Greek or Latin hates it." This package is for proving theorems in Categorial grammars (CG) and constructing semantic gr

10 Aug 19, 2022
A system for quickly generating training data with weak supervision

Programmatically Build and Manage Training Data Announcement The Snorkel team is now focusing their efforts on Snorkel Flow, an end-to-end AI applicat

Snorkel Team 5.4k Jan 02, 2023
A fast Evolution Strategy implementation in Python

Evostra: Evolution Strategy for Python Evolution Strategy (ES) is an optimization technique based on ideas of adaptation and evolution. You can learn

Mika 251 Dec 08, 2022
PyTorch implementation of the Pose Residual Network (PRN)

Pose Residual Network This repository contains a PyTorch implementation of the Pose Residual Network (PRN) presented in our ECCV 2018 paper: Muhammed

Salih Karagoz 289 Nov 28, 2022
Object detection and instance segmentation toolkit based on PaddlePaddle.

Object detection and instance segmentation toolkit based on PaddlePaddle.

9.3k Jan 02, 2023
Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Official code release for 3DV 2021 paper Human Performance Capture from Monocular Video in the Wild.

Chen Guo 58 Dec 24, 2022
Code for the paper "Graph Attention Tracking". (CVPR2021)

SiamGAT 1. Environment setup This code has been tested on Ubuntu 16.04, Python 3.5, Pytorch 1.2.0, CUDA 9.0. Please install related libraries before r

122 Dec 24, 2022
Code for ACL2021 long paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases

LANKA This is the source code for paper: Knowledgeable or Educated Guess? Revisiting Language Models as Knowledge Bases (ACL 2021, long paper) Referen

Boxi Cao 30 Oct 24, 2022
A highly efficient, fast, powerful and light-weight anime downloader and streamer for your favorite anime.

AnimDL - Download & Stream Your Favorite Anime AnimDL is an incredibly powerful tool for downloading and streaming anime. Core features Abuses the dev

KR 759 Jan 08, 2023
Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM)

Minimisation of a negative log likelihood fit to extract the lifetime of the D^0 meson (MNLL2ELDM) Introduction The average lifetime of the $D^{0}$ me

Son Gyo Jung 1 Dec 17, 2021
Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning.

Collection of tasks for fast prototyping, baselining, finetuning and solving problems with deep learning Installation

Pytorch Lightning 1.6k Jan 08, 2023