UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation

Overview

UNION

Automatic Evaluation Metric described in the paper UNION: An UNreferenced MetrIc for Evaluating Open-eNded Story Generation (EMNLP 2020). Please refer to the Paper List for more information about Open-eNded Language Generation (ONLG) tasks. Hopefully the paper list will help you know more about this field.

Contents

Prerequisites

The code is written in TensorFlow library. To use the program the following prerequisites need to be installed.

  • Python 3.7.0
  • tensorflow-gpu 1.14.0
  • numpy 1.18.1
  • regex 2020.2.20
  • nltk 3.4.5

Computing Infrastructure

We train UNION based on the platform:

  • OS: Ubuntu 16.04.3 LTS (GNU/Linux 4.4.0-98-generic x86_64)
  • GPU: NVIDIA TITAN Xp

Quick Start

1. Constructing Negative Samples

Execute the following command:

cd ./Data
python3 ./get_vocab.py your_mode
python3 ./gen_train_data.py your_mode
  • your_mode is roc for ROCStories corpus or wp for WritingPrompts dataset. Then the summary of vocabulary and the corresponding frequency and pos-tagging will be found under ROCStories/ini_data/entitiy_vocab.txt or WritingPrompts/ini_data/entity_vocab.txt.
  • Negative samples and human-written stories will be constructed based on the original training set. The training set will be found under ROCStories/train_data or WritingPrompts/train_data.
  • Note: currently only 10 samples of the full original data and training data are provided. The full data can be downloaded from THUcloud or GoogleDrive.

2. Training of UNION

Execute the following command:

python3 ./run_union.py --data_dir your_data_dir \
    --output_dir ./model/union \
    --task_name train \
    --init_checkpoint ./model/uncased_L-12_H-768_A-12/bert_model.ckpt
  • your_data_dir is ./Data/ROCStories or ./Data/WritingPrompts.
  • The initial checkpoint of BERT can be downloaded from bert. We use the uncased base version of BERT (about 110M parameters). We train the model for 40000 steps at most. The training process will task about 1~2 days.

3. Prediction with UNION

Execute the following command:

python3 ./run_union.py --data_dir your_data_dir \
    --output_dir ./model/output \
    --task_name pred \
    --init_checkpoint your_model_name
  • your_data_dir is ./Data/ROCStories or ./Data/WritingPrompts. If you want to evaluate your custom texts, you only need tp change your file format into ours.

  • your_model_name is ./model/union_roc/union_roc or ./model/union_wp/union_wp. The fine-tuned checkpoint can be downloaded from the following link:

Dataset Fine-tuned Model
ROCStories THUcloud; GoogleDrive
WritingPrompts THUcloud; GoogleDrive
  • The union score of the stories under your_data_dir/ant_data can be found under the output_dir ./model/output.

4. Correlation Calculation

Execute the following command:

python3 ./correlation.py your_mode

Then the correlation between the human judgements under your_data_dir/ant_data and the scores of metrics under your_data_dir/metric_output will be output. The figures under "./figure" show the score graph between metric scores and human judgments for ROCStories corpus.

Data Instruction for files under ./Data

├── Data
   └── `negation.txt`             # manually constructed negation word vocabulary.
   └── `conceptnet_antonym.txt`   # triples with antonym relations extracted from ConceptNet.
   └── `conceptnet_entity.csv`    # entities acquired from ConceptNet.
   └── `ROCStories`
       ├── `ant_data`        # sampled stories and corresponding human annotation.
              └── `ant_data.txt`        # include only binary annotation for reasonable(1) or unreasonable(0)
              └── `ant_data_all.txt`    # include the annotation for specific error types: reasonable(0), repeated plots(1), bad coherence(2), conflicting logic(3), chaotic scenes(4), and others(5). 
              └── `reference.txt`       # human-written stories with the same leading context with annotated stories.
              └── `reference_ipt.txt`
              └── `reference_opt.txt`
       ├── `ini_data`        # original dataset for training/validation/testing.
              └── `train.txt`
              └── `dev.txt`
              └── `test.txt`
              └── `entity_vocab.txt`    # generated by `get_vocab.py`, consisting of all the entities and the corresponding tagged POS followed by the mention frequency in the dataset.
       ├── `train_data`      # negative samples and corresponding human-written stories for training, which are constructed by `gen_train_data.py`.
              └── `train_human.txt`
              └── `train_negative.txt`
              └── `dev_human.txt`
              └── `dev_negative.txt`
              └── `test_human.txt`
              └── `test_negative.txt`
       ├── `metric_output`   # the scores of different metrics, which can be used to replicate the correlation in Table 5 of the paper. 
              └── `bleu.txt`
              └── `bleurt.txt`
              └── `ppl.txt`             # the sign of the result of Perplexity needs to be changed to get the result for *minus* Perplexity.
              └── `union.txt`
              └── `union_recon.txt`     # the ablated model without the reconstruction task
              └── ...
   └── `WritingPrompts`
       ├── ...
 
  • The annotated data file ant_data.txt and ant_data_all.txt are formatted as Story ID ||| Story ||| Seven Annotated Scores.
  • ant_data_all.txt is only available for ROCStories corpus. ant_data_all.txt is the same with ant_data.txt for WrintingPrompts dataset.

Citation

Please kindly cite our paper if this paper and the code are helpful.

@misc{guan2020union,
    title={UNION: An Unreferenced Metric for Evaluating Open-ended Story Generation},
    author={Jian Guan and Minlie Huang},
    year={2020},
    eprint={2009.07602},
    archivePrefix={arXiv},
    primaryClass={cs.CL}
}
Owner
Conversational AI groups from Tsinghua University
[ICML'21] Estimate the accuracy of the classifier in various environments through self-supervision

What Does Rotation Prediction Tell Us about Classifier Accuracy under Varying Testing Environments? [Paper] [ICML'21 Project] PyTorch Implementation T

24 Oct 26, 2022
PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer

SimTrans-Weak-Shot-Classification This repository contains the official PyTorch implementation of the following paper: Weak-shot Fine-grained Classifi

BCMI 60 Dec 02, 2022
A Neural Net Training Interface on TensorFlow, with focus on speed + flexibility

Tensorpack is a neural network training interface based on TensorFlow. Features: It's Yet Another TF high-level API, with speed, and flexibility built

Tensorpack 6.2k Jan 01, 2023
The code for the NeurIPS 2021 paper "A Unified View of cGANs with and without Classifiers".

Energy-based Conditional Generative Adversarial Network (ECGAN) This is the code for the NeurIPS 2021 paper "A Unified View of cGANs with and without

sianchen 22 May 28, 2022
PyTorch implementation of ARM-Net: Adaptive Relation Modeling Network for Structured Data.

A ready-to-use framework of latest models for structured (tabular) data learning with PyTorch. Applications include recommendation, CRT prediction, healthcare analytics, and etc.

48 Nov 30, 2022
TensorLight - A high-level framework for TensorFlow

TensorLight is a high-level framework for TensorFlow-based machine intelligence applications. It reduces boilerplate code and enables advanced feature

Benjamin Kan 10 Jul 31, 2022
Fog Simulation on Real LiDAR Point Clouds for 3D Object Detection in Adverse Weather

LiDAR fog simulation Created by Martin Hahner at the Computer Vision Lab of ETH Zurich. This is the official code release of the paper Fog Simulation

Martin Hahner 110 Dec 30, 2022
EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos.

EasyMocap is an open-source toolbox for markerless human motion capture from RGB videos. In this project, we provide the basic code for fitt

ZJU3DV 2.2k Jan 05, 2023
Code for the paper A Theoretical Analysis of the Repetition Problem in Text Generation

A Theoretical Analysis of the Repetition Problem in Text Generation This repository share the code for the paper "A Theoretical Analysis of the Repeti

Zihao Fu 37 Nov 21, 2022
Using multidimensional LSTM neural networks to create a forecast for Bitcoin price

Multidimensional LSTM BitCoin Time Series Using multidimensional LSTM neural networks to create a forecast for Bitcoin price. For notes around this co

Jakob Aungiers 318 Dec 14, 2022
Deep Anomaly Detection with Outlier Exposure (ICLR 2019)

Outlier Exposure This repository contains the essential code for the paper Deep Anomaly Detection with Outlier Exposure (ICLR 2019). Requires Python 3

Dan Hendrycks 464 Dec 27, 2022
Code for paper Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting

Decoupled Spatial-Temporal Graph Neural Networks Code for our paper: Decoupled Dynamic Spatial-Temporal Graph Neural Network for Traffic Forecasting.

S22 43 Jan 04, 2023
Machine learning and Deep learning models, deploy on telegram (the best social media)

Semi Intelligent BOT The project involves : Classifying fake news Classifying objects such as aeroplane, automobile, bird, cat, deer, dog, frog, horse

MohammadReza Norouzi 5 Mar 06, 2022
Continual learning with sketched Jacobian approximations

Continual learning with sketched Jacobian approximations This repository contains the code for reproducing figures and results in the paper ``Provable

Machine Learning and Information Processing Laboratory 1 Jun 30, 2022
Semi-supervised learning for object detection

Source code for STAC: A Simple Semi-Supervised Learning Framework for Object Detection STAC is a simple yet effective SSL framework for visual object

Google Research 348 Dec 25, 2022
A PyTorch Lightning Callback for pushing models to the Hugging Face Hub 🤗⚡️

hf-hub-lightning A callback for pushing lightning models to the Hugging Face Hub. Note: I made this package for myself, mostly...if folks seem to be i

Nathan Raw 27 Dec 14, 2022
Hcpy - Interface with Home Connect appliances in Python

Interface with Home Connect appliances in Python This is a very, very beta inter

Trammell Hudson 116 Dec 27, 2022
[SDM 2022] Towards Similarity-Aware Time-Series Classification

SimTSC This is the PyTorch implementation of SDM2022 paper Towards Similarity-Aware Time-Series Classification. We propose Similarity-Aware Time-Serie

Daochen Zha 49 Dec 27, 2022
A list of awesome PyTorch scholarship articles, guides, blogs, courses and other resources.

Awesome PyTorch Scholarship Resources A collection of awesome PyTorch and Python learning resources. Contributions are always welcome! Course Informat

Arnas Gečas 302 Dec 03, 2022
Low-code/No-code approach for deep learning inference on devices

EzEdgeAI A concept project that uses a low-code/no-code approach to implement deep learning inference on devices. It provides a componentized framewor

On-Device AI Co., Ltd. 7 Apr 05, 2022