PyTorch implementation of Weak-shot Fine-grained Classification via Similarity Transfer

Overview

SimTrans-Weak-Shot-Classification

This repository contains the official PyTorch implementation of the following paper:

Weak-shot Fine-grained Classification via Similarity Transfer

Junjie Chen, Li Niu, Liu Liu, Liqing Zhang
MoE Key Lab of Artificial Intelligence, Shanghai Jiao Tong University
https://arxiv.org/abs/2009.09197
Accepted by NeurIPS2021.

Abstract

Recognizing fine-grained categories remains a challenging task, due to the subtle distinctions among different subordinate categories, which results in the need of abundant annotated samples. To alleviate the data-hungry problem, we consider the problem of learning novel categories from web data with the support of a clean set of base categories, which is referred to as weak-shot learning. In this setting, we propose to transfer pairwise semantic similarity from base categories to novel categories. Specifically, we firstly train a similarity net on clean data, and then leverage the transferred similarity to denoise web training data using two simple yet effective strategies. In addition, we apply adversarial loss on similarity net to enhance the transferability of similarity. Comprehensive experiments on three fine-grained datasets demonstrate the effectiveness of our setting and method.

1. Setting

In practice, we often have a set of base categories with sufficient well-labeled data, and the problem is how to learn novel categories with less expense, in which base categories and novel categories have no overlap. Such problem motivates zero-shot learning, few-shot learning, as well as our setting. To bridge the gap between base categories and novel categories, zero-shot learning requires category-level semantic representation for all categories, while few-shot learning requires a few clean examples for novel categories. Considering the drawbacks of zero/few-shot learning and the accessibility of free web data, we intend to learn novel categories by virtue of web data with the support of a clean set of base categories.

2. Our Method

Specifically, our framework consists of two training phases. Firstly, we train a similarity net (SimNet) on base training set, which feeds in two images and outputs the semantic similarity. Secondly, we apply the trained SimNet to obtain the semantic similarities among web images. In this way, the similarity is transferred from base categories to novel categories. Based on the transferred similarities, we design two simple yet effective methods to assist in learning the main classifier on novel training set. (1) Sample weighting (i.e., assign small weights to the images dissimilar to others) reduces the impact of outliers (web images with incorrect labels) and thus alleviates the problem of noise overfitting. (2) Graph regularization (i.e., pull close the features of semantically similar samples) prevents the feature space from being disturbed by noisy labels. In addition, we propose to apply adversarial loss on SimNet to make it indistinguishable for base categories and novel categories, so that the transferability of similarity is strengthened.

3. Results

Extensive experiments on three fine-grained datasets have demonstrated the potential of our learning scenario and the effectiveness of our method. For qualitative analysis, on the one hand, the clean images are assigned with high weights, while the images belonging to outlier are assigned with low weights; on the other hand, the transferred similarities accurately portray the semantic relations among web images.

4. Experiment Codebase

4.1 Data

We provide the packages of CUB, Car, FGVC, and WebVision at Baidu Cloud (access code: BCMI).

The original packages are split by split -b 10G ../CUB.zip CUB.zip., thus we need merge by cat CUB.zip.a* > CUB.zip before decompression.

The ImageNet dataset is publicly available, and all data files are configured as:

├── CUB
├── Car
├── Air
├── WebVision
├── ImageNet:
  ├── train
      ├── ……
  ├── val
      ├── ……
  ├── ILSVRC2012_validation_ground_truth.txt
  ├── meta.mat
  ├── train_files.txt

Just employ --data_path ANY_PATH/CUB to specify the data dir.

4.2 Install

See requirement.txt.

4.3 Evaluation

The trained models are released as trained_models.zip at Baidu Cloud (access code: BCMI).

The command in _scripts/DATASET_NAME/eval.sh is used to evaluate the model.

4.4 Training

We provide the full scripts for CUB dataset in _scripts/CUB/ dir as an example.

For other datasets, just change the data path, i.e., --data_path ANY_PATH/WebVision.

Bibtex

If you find this work is useful for your research, please cite our paper using the following BibTeX [pdf] [supp] [arxiv]:

@inproceedings{SimTrans2021,
title={Weak-shot Fine-grained Classification via Similarity Transfer},
author={Chen, Junjie and Niu, Li and Liu, Liu and Zhang, Liqing},
booktitle={NeurIPS},
year={2021}}
Owner
BCMI
Center for Brain-Like Computing and Machine Intelligence, Shanghai Jiao Tong University.
BCMI
Algo-burn - Script to configure an Algorand address as a "burn" address for one or more ASA tokens

Algorand Burn Address This is a simple script to illustrate how a "burn address"

GSD 5 May 10, 2022
Implementation for NeurIPS 2021 Submission: SparseFed

READ THIS FIRST This repo is an anonymized version of an existing repository of GitHub, for the AIStats 2021 submission: SparseFed: Mitigating Model P

2 Jun 15, 2022
PyTorch implementation of MulMON

MulMON This repository contains a PyTorch implementation of the paper: Learning Object-Centric Representations of Multi-object Scenes from Multiple Vi

NanboLi 16 Nov 03, 2022
This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool

OpenSurfaces Segmentation UI This repository contains the segmentation user interface from the OpenSurfaces project, extracted as a lightweight tool.

Sean Bell 66 Jul 11, 2022
A Pytorch implementation of "LegoNet: Efficient Convolutional Neural Networks with Lego Filters" (ICML 2019).

LegoNet This code is the implementation of ICML2019 paper LegoNet: Efficient Convolutional Neural Networks with Lego Filters Run python train.py You c

YangZhaohui 140 Sep 26, 2022
HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electronic Health Records

HiPAL Code for KDD'22 Applied Data Science Track submission -- HiPAL: A Deep Framework for Physician Burnout Prediction Using Activity Logs in Electro

Hanyang Liu 4 Aug 08, 2022
AlgoVision - A Framework for Differentiable Algorithms and Algorithmic Supervision

NeurIPS 2021 Paper "Learning with Algorithmic Supervision via Continuous Relaxations"

Felix Petersen 76 Jan 01, 2023
[ICLR 2021] "Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective" by Wuyang Chen, Xinyu Gong, Zhangyang Wang

Neural Architecture Search on ImageNet in Four GPU Hours: A Theoretically Inspired Perspective [PDF] Wuyang Chen, Xinyu Gong, Zhangyang Wang In ICLR 2

VITA 156 Nov 28, 2022
OBG-FCN - implementation of 'Object Boundary Guided Semantic Segmentation'

OBG-FCN This repository is to reproduce the implementation of 'Object Boundary Guided Semantic Segmentation' in http://arxiv.org/abs/1603.09742 Object

Jiu XU 3 Mar 11, 2019
The code is an implementation of Feedback Convolutional Neural Network for Visual Localization and Segmentation.

Feedback Convolutional Neural Network for Visual Localization and Segmentation The code is an implementation of Feedback Convolutional Neural Network

19 Dec 04, 2022
Brain Tumor Detection with Tensorflow Neural Networks.

Brain-Tumor-Detection A convolutional neural network model built with Tensorflow & Keras to detect brain tumor and its different variants. Data of the

404ErrorNotFound 5 Aug 23, 2022
🛠️ SLAMcore SLAM Utilities

slamcore_utils Description This repo contains the slamcore-setup-dataset script. It can be used for installing a sample dataset for offline testing an

SLAMcore 7 Aug 04, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 29, 2022
Open & Efficient for Framework for Aspect-based Sentiment Analysis

PyABSA - Open & Efficient for Framework for Aspect-based Sentiment Analysis Fast & Low Memory requirement & Enhanced implementation of Local Context F

YangHeng 567 Jan 07, 2023
A Comprehensive Study on Learning-Based PE Malware Family Classification Methods

A Comprehensive Study on Learning-Based PE Malware Family Classification Methods Datasets Because of copyright issues, both the MalwareBazaar dataset

8 Oct 21, 2022
A U-Net combined with a variational auto-encoder that is able to learn conditional distributions over semantic segmentations.

Probabilistic U-Net + **Update** + An improved Model (the Hierarchical Probabilistic U-Net) + LIDC crops is now available. See below. Re-implementatio

Simon Kohl 498 Dec 26, 2022
Complementary Patch for Weakly Supervised Semantic Segmentation, ICCV21 (poster)

CPN (ICCV2021) This is an implementation of Complementary Patch for Weakly Supervised Semantic Segmentation, which is accepted by ICCV2021 poster. Thi

Ferenas 20 Dec 12, 2022
Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN

Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN Introduction Image super-resolution (SR) is the process of recovering high-resoluti

8 Apr 15, 2022
Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control

Cooperative multi-agent reinforcement learning for high-dimensional nonequilibrium control Official implementation of: Cooperative multi-agent reinfor

0 Nov 16, 2021
Keras documentation, hosted live at keras.io

Keras.io documentation generator This repository hosts the code used to generate the keras.io website. Generating a local copy of the website pip inst

Keras 2k Jan 08, 2023