Context-Sensitive Misspelling Correction of Clinical Text via Conditional Independence, CHIL 2022

Overview

cim-misspelling

Pytorch implementation of Context-Sensitive Spelling Correction of Clinical Text via Conditional Independence, CHIL 2022.

image

This model (CIM) corrects misspellings with a char-based language model and a corruption model (edit distance). The model is being pre-trained and evaluated on clinical corpus and datasets. Please see the paper for more detailed explanation.

Requirements

How to Run

Clone the repo

$ git clone --recursive https://github.com/dalgu90/cim-misspelling.git

Data preparing

  1. Download the MIMIC-III dataset from PhysioNet, especially NOTEEVENTS.csv and put under data/mimic3

  2. Download LRWD and prevariants of the SPECIALIST Lexicon from the LSG website (2018AB version) and put under data/umls.

  3. Download the English dictionary english.txt from here (commit 7cb484d) and put under data/english_words.

  4. Run scripts/build_vocab_corpus.ipynb to build the dictionary and split the MIMIC-III notes into files.

  5. Run the Jupyter notebook for the dataset that you want to download/pre-process:

    • MIMIC-III misspelling dataset, or ClinSpell (Fivez et al., 2017): scripts/preprocess_clinspell.ipynb
    • CSpell dataset (Lu et al., 2019): scripts/preprocess_cspell.ipynb
    • Synthetic misspelling dataset from the MIMIC-III: scripts/synthetic_dataset.ipynb
  6. Download the BlueBERT model from here under bert/ncbi_bert_{base|large}.

    • For CIM-Base, please download "BlueBERT-Base, Uncased, PubMed+MIMIC-III"
    • For CIM-Large, please download "BlueBERT-Large, Uncased, PubMed+MIMIC-III"

Pre-training the char-based LM on MIMIC-III

Please run pretrain_cim_base.sh (CIM-Base) or pretrain_cim_large.sh(CIM-Large) and to pretrain the character langauge model of CIM. The pre-training will evaluate the LM periodically by correcting synthetic misspells generated from the MIMIC-III data. You may need 2~4 GPUs (XXGB+ GPU memory for CIM-Base and YYGB+ for CIM-Large) to pre-train with the batch size 256. There are several options you may want to configure:

  • num_gpus: number of GPUs
  • batch_size: batch size
  • training_step: total number of steps to train
  • init_ckpt/init_step: the checkpoint file/steps to resume pretraining
  • num_beams: beam search width for evaluation
  • mimic_csv_dir: directory of the MIMIC-III csv splits
  • bert_dir: directory of the BlueBERT files

You can also download the pre-trained LMs and put under model/:

Misspelling Correction with CIM

Please specify the dataset dir and the file to evaluate in the evaluation script (eval_cim_base.sh or eval_cim_large.sh), and run the script.
You may want to set init_step to specify the checkpoint you want to load

Cite this work

@InProceedings{juyong2022context,
  title = {Context-Sensitive Spelling Correction of Clinical Text via Conditional Independence},
  author = {Kim, Juyong and Weiss, Jeremy C and Ravikumar, Pradeep},
  booktitle = {Proceedings of the Conference on Health, Inference, and Learning},
  pages = {234--247},
  year = {2022},
  volume = {174},
  series = {Proceedings of Machine Learning Research},
  month = {07--08 Apr},
  publisher = {PMLR}
}
Owner
Juyong Kim
Juyong Kim
Photographic Image Synthesis with Cascaded Refinement Networks - Pytorch Implementation

Photographic Image Synthesis with Cascaded Refinement Networks-Pytorch (https://arxiv.org/abs/1707.09405) This is a Pytorch implementation of cascaded

Soumya Tripathy 63 Mar 27, 2022
Implement object segmentation on images using HOG algorithm proposed in CVPR 2005

HOG Algorithm Implementation Description HOG (Histograms of Oriented Gradients) Algorithm is an algorithm aiming to realize object segmentation (edge

Leo Hsieh 2 Mar 12, 2022
Official code release for "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis"

GRAF This repository contains official code for the paper GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. You can find detailed usage i

349 Dec 29, 2022
Code for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in Deep Latent Space"

SRHEN This is a better and simpler implementation for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in

1 Oct 28, 2022
source code for https://arxiv.org/abs/2005.11248 "Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics"

Accelerating Antimicrobial Discovery with Controllable Deep Generative Models and Molecular Dynamics This work will be published in Nature Biomedical

International Business Machines 71 Nov 15, 2022
Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning"

Code for "Solving Graph-based Public Good Games with Tree Search and Imitation Learning" This is the code for the paper Solving Graph-based Public Goo

Victor-Alexandru Darvariu 3 Dec 05, 2022
PyTorch Lightning + Hydra. A feature-rich template for rapid, scalable and reproducible ML experimentation with best practices. ⚡🔥⚡

Lightning-Hydra-Template A clean and scalable template to kickstart your deep learning project 🚀 ⚡ 🔥 Click on Use this template to initialize new re

Łukasz Zalewski 2.1k Jan 09, 2023
[2021][ICCV][FSNet] Full-Duplex Strategy for Video Object Segmentation

Full-Duplex Strategy for Video Object Segmentation (ICCV, 2021) Authors: Ge-Peng Ji, Keren Fu, Zhe Wu, Deng-Ping Fan*, Jianbing Shen, & Ling Shao This

Daniel-Ji 55 Dec 22, 2022
Exploring Simple 3D Multi-Object Tracking for Autonomous Driving (ICCV 2021)

Exploring Simple 3D Multi-Object Tracking for Autonomous Driving Chenxu Luo, Xiaodong Yang, Alan Yuille Exploring Simple 3D Multi-Object Tracking for

QCraft 141 Nov 21, 2022
"Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback"

This is code repo for our EMNLP 2017 paper "Reinforcement Learning for Bandit Neural Machine Translation with Simulated Human Feedback", which implements the A2C algorithm on top of a neural encoder-

Khanh Nguyen 131 Oct 21, 2022
Flask101 - FullStack Web Development with Python & JS - From TAQWA

Task: Create a CLI Calculator Step 0: Creating Virtual Environment $ python -m

Hossain Foysal 1 May 31, 2022
💡 Learnergy is a Python library for energy-based machine learning models.

Learnergy: Energy-based Machine Learners Welcome to Learnergy. Did you ever reach a bottleneck in your computational experiments? Are you tired of imp

Gustavo Rosa 57 Nov 17, 2022
Extreme Lightwegith Portrait Segmentation

Extreme Lightwegith Portrait Segmentation Please go to this link to download code Requirements python 3 pytorch = 0.4.1 torchvision==0.2.1 opencv-pyt

HYOJINPARK 59 Dec 16, 2022
Pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021).

Pytorch code for SS-Net This is a pytorch implementation of Straight Sampling Network For Point Cloud Learning (ICIP2021). Environment Code is tested

Sun Ran 1 May 18, 2022
Clean and readable code for Decision Transformer: Reinforcement Learning via Sequence Modeling

Minimal implementation of Decision Transformer: Reinforcement Learning via Sequence Modeling in PyTorch for mujoco control tasks in OpenAI gym

Nikhil Barhate 104 Jan 06, 2023
A collection of Google research projects related to Federated Learning and Federated Analytics.

Federated Research Federated Research is a collection of research projects related to Federated Learning and Federated Analytics. Federated learning i

Google Research 483 Jan 05, 2023
RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation

RAANet: Range-Aware Attention Network for LiDAR-based 3D Object Detection with Auxiliary Density Level Estimation Anonymous submission Abstract 3D obj

30 Sep 16, 2022
You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors

You Only Hypothesize Once: Point Cloud Registration with Rotation-equivariant Descriptors In this paper, we propose a novel local descriptor-based fra

Haiping Wang 80 Dec 15, 2022
This repository introduces a short project about Transfer Learning for Classification of MRI Images.

Transfer Learning for MRI Images Classification This repository introduces a short project made during my stay at Neuromatch Summer School 2021. This

Oscar Guarnizo 3 Nov 15, 2022
scalingscattering

Scaling The Scattering Transform : Deep Hybrid Networks This repository contains the experiments found in the paper: https://arxiv.org/abs/1703.08961

Edouard Oyallon 78 Dec 21, 2022