Context-Sensitive Misspelling Correction of Clinical Text via Conditional Independence, CHIL 2022

Overview

cim-misspelling

Pytorch implementation of Context-Sensitive Spelling Correction of Clinical Text via Conditional Independence, CHIL 2022.

image

This model (CIM) corrects misspellings with a char-based language model and a corruption model (edit distance). The model is being pre-trained and evaluated on clinical corpus and datasets. Please see the paper for more detailed explanation.

Requirements

How to Run

Clone the repo

$ git clone --recursive https://github.com/dalgu90/cim-misspelling.git

Data preparing

  1. Download the MIMIC-III dataset from PhysioNet, especially NOTEEVENTS.csv and put under data/mimic3

  2. Download LRWD and prevariants of the SPECIALIST Lexicon from the LSG website (2018AB version) and put under data/umls.

  3. Download the English dictionary english.txt from here (commit 7cb484d) and put under data/english_words.

  4. Run scripts/build_vocab_corpus.ipynb to build the dictionary and split the MIMIC-III notes into files.

  5. Run the Jupyter notebook for the dataset that you want to download/pre-process:

    • MIMIC-III misspelling dataset, or ClinSpell (Fivez et al., 2017): scripts/preprocess_clinspell.ipynb
    • CSpell dataset (Lu et al., 2019): scripts/preprocess_cspell.ipynb
    • Synthetic misspelling dataset from the MIMIC-III: scripts/synthetic_dataset.ipynb
  6. Download the BlueBERT model from here under bert/ncbi_bert_{base|large}.

    • For CIM-Base, please download "BlueBERT-Base, Uncased, PubMed+MIMIC-III"
    • For CIM-Large, please download "BlueBERT-Large, Uncased, PubMed+MIMIC-III"

Pre-training the char-based LM on MIMIC-III

Please run pretrain_cim_base.sh (CIM-Base) or pretrain_cim_large.sh(CIM-Large) and to pretrain the character langauge model of CIM. The pre-training will evaluate the LM periodically by correcting synthetic misspells generated from the MIMIC-III data. You may need 2~4 GPUs (XXGB+ GPU memory for CIM-Base and YYGB+ for CIM-Large) to pre-train with the batch size 256. There are several options you may want to configure:

  • num_gpus: number of GPUs
  • batch_size: batch size
  • training_step: total number of steps to train
  • init_ckpt/init_step: the checkpoint file/steps to resume pretraining
  • num_beams: beam search width for evaluation
  • mimic_csv_dir: directory of the MIMIC-III csv splits
  • bert_dir: directory of the BlueBERT files

You can also download the pre-trained LMs and put under model/:

Misspelling Correction with CIM

Please specify the dataset dir and the file to evaluate in the evaluation script (eval_cim_base.sh or eval_cim_large.sh), and run the script.
You may want to set init_step to specify the checkpoint you want to load

Cite this work

@InProceedings{juyong2022context,
  title = {Context-Sensitive Spelling Correction of Clinical Text via Conditional Independence},
  author = {Kim, Juyong and Weiss, Jeremy C and Ravikumar, Pradeep},
  booktitle = {Proceedings of the Conference on Health, Inference, and Learning},
  pages = {234--247},
  year = {2022},
  volume = {174},
  series = {Proceedings of Machine Learning Research},
  month = {07--08 Apr},
  publisher = {PMLR}
}
Owner
Juyong Kim
Juyong Kim
This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction".

TreePartNet This is the code repository implementing the paper "TreePartNet: Neural Decomposition of Point Clouds for 3D Tree Reconstruction". Depende

刘彦超 34 Nov 30, 2022
MPI-IS Mesh Processing Library

Perceiving Systems Mesh Package This package contains core functions for manipulating meshes and visualizing them. It requires Python 3.5+ and is supp

Max Planck Institute for Intelligent Systems 494 Jan 06, 2023
Unet network with mean teacher for altrasound image segmentation

Unet network with mean teacher for altrasound image segmentation

5 Nov 21, 2022
Azua - build AI algorithms to aid efficient decision-making with minimum data requirements.

Project Azua 0. Overview Many modern AI algorithms are known to be data-hungry, whereas human decision-making is much more efficient. The human can re

Microsoft 197 Jan 06, 2023
CVPR2021 Workshop - HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization.

HDRUNet [Paper Link] HDRUNet: Single Image HDR Reconstruction with Denoising and Dequantization By Xiangyu Chen, Yihao Liu, Zhengwen Zhang, Yu Qiao an

XyChen 105 Dec 20, 2022
MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモ

Tokyo2020-Pictogram-using-MediaPipe MediaPipeで姿勢推定を行い、Tokyo2020オリンピック風のピクトグラムを表示するデモです。 Tokyo2020Pictgram02.mp4 Requirement mediapipe 0.8.6 or later O

KazuhitoTakahashi 295 Dec 26, 2022
Official implementation of Rich Semantics Improve Few-Shot Learning (BMVC, 2021)

Rich Semantics Improve Few-Shot Learning Paper Link Abstract : Human learning benefits from multi-modal inputs that often appear as rich semantics (e.

Mohamed Afham 11 Jul 26, 2022
CausaLM: Causal Model Explanation Through Counterfactual Language Models

CausaLM: Causal Model Explanation Through Counterfactual Language Models Authors: Amir Feder, Nadav Oved, Uri Shalit, Roi Reichart Abstract: Understan

Amir Feder 39 Jul 10, 2022
Joint project of the duo Hacker Ninjas

Project Smoothie Společný projekt dua Hacker Ninjas. První pokus o hříčku po třech týdnech učení se programování. Jakub Kolář e:\

Jakub Kolář 2 Jan 07, 2022
Implementation for the paper SMPLicit: Topology-aware Generative Model for Clothed People (CVPR 2021)

SMPLicit: Topology-aware Generative Model for Clothed People [Project] [arXiv] License Software Copyright License for non-commercial scientific resear

Enric Corona 225 Dec 13, 2022
This is a deep learning-based method to segment deep brain structures and a brain mask from T1 weighted MRI.

DBSegment This tool generates 30 deep brain structures segmentation, as well as a brain mask from T1-Weighted MRI. The whole procedure should take ~1

Luxembourg Neuroimaging (Platform OpNeuroImg) 2 Oct 25, 2022
Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your personal computer!

Reproducible research and reusable acyclic workflows in Python. Execute code on HPC systems as if you executed them on your machine! Motivation Would

Joeri Hermans 15 Sep 11, 2022
FAMIE is a comprehensive and efficient active learning (AL) toolkit for multilingual information extraction (IE)

FAMIE: A Fast Active Learning Framework for Multilingual Information Extraction

18 Sep 01, 2022
Multiple Object Tracking with Yolov5!

Tracking with yolov5 This implementation is for who need to tracking multi-object only with detector. You can easily track mult-object with your well

9 Nov 08, 2022
Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples / ICLR 2018

Training Confidence-Calibrated Classifier for Detecting Out-of-Distribution Samples This project is for the paper "Training Confidence-Calibrated Clas

168 Nov 29, 2022
Python Single Object Tracking Evaluation

pysot-toolkit The purpose of this repo is to provide evaluation API of Current Single Object Tracking Dataset, including VOT2016 VOT2018 VOT2018-LT OT

348 Dec 22, 2022
3D ResNets for Action Recognition (CVPR 2018)

3D ResNets for Action Recognition Update (2020/4/13) We published a paper on arXiv. Hirokatsu Kataoka, Tenga Wakamiya, Kensho Hara, and Yutaka Satoh,

Kensho Hara 3.5k Jan 06, 2023
[ICLR2021oral] Rethinking Architecture Selection in Differentiable NAS

DARTS-PT Code accompanying the paper ICLR'2021: Rethinking Architecture Selection in Differentiable NAS Ruochen Wang, Minhao Cheng, Xiangning Chen, Xi

Ruochen Wang 86 Dec 27, 2022
CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution

CondLaneNet: a Top-to-down Lane Detection Framework Based on Conditional Convolution This is the official implementation code of the paper "CondLaneNe

Alibaba Cloud 311 Dec 30, 2022
Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch.

SE3 Transformer - Pytorch Implementation of SE3-Transformers for Equivariant Self-Attention, in Pytorch. May be needed for replicating Alphafold2 resu

Phil Wang 207 Dec 23, 2022