[2021][ICCV][FSNet] Full-Duplex Strategy for Video Object Segmentation

Overview

Full-Duplex Strategy for Video Object Segmentation (ICCV, 2021)

Authors: Ge-Peng Ji, Keren Fu, Zhe Wu, Deng-Ping Fan*, Jianbing Shen, & Ling Shao

  • This repository provides code for paper "Full-Duplex Strategy for Video Object Segmentation" accepted by the ICCV-2021 conference (arXiv Version / 中译版本).

  • This project is under construction. If you have any questions about our paper or bugs in our git project, feel free to contact me.

  • If you like our FSNet for your personal research, please cite this paper (BibTeX).

1. News

  • [2021/08/24] Upload the training script for video object segmentation.
  • [2021/08/22] Upload the pre-trained snapshot and the pre-computed results on U-VOS and V-SOD tasks.
  • [2021/08/20] Release inference code, evaluation code (VSOD).
  • [2021/07/20] Create Github page.

2. Introduction

Why?

Appearance and motion are two important sources of information in video object segmentation (VOS). Previous methods mainly focus on using simplex solutions, lowering the upper bound of feature collaboration among and across these two cues.


Figure 1: Visual comparison between the simplex (i.e., (a) appearance-refined motion and (b) motion-refined appear- ance) and our full-duplex strategy. In contrast, our FS- Net offers a collaborative way to leverage the appearance and motion cues under the mutual restraint of full-duplex strategy, thus providing more accurate structure details and alleviating the short-term feature drifting issue.

What?

In this paper, we study a novel framework, termed the FSNet (Full-duplex Strategy Network), which designs a relational cross-attention module (RCAM) to achieve bidirectional message propagation across embedding subspaces. Furthermore, the bidirectional purification module (BPM) is introduced to update the inconsistent features between the spatial-temporal embeddings, effectively improving the model's robustness.


Figure 2: The pipeline of our FSNet. The Relational Cross-Attention Module (RCAM) abstracts more discriminative representations between the motion and appearance cues using the full-duplex strategy. Then four Bidirectional Purification Modules (BPM) are stacked to further re-calibrate inconsistencies between the motion and appearance features. Finally, we utilize the decoder to generate our prediction.

How?

By considering the mutual restraint within the full-duplex strategy, our FSNet performs the cross-modal feature-passing (i.e., transmission and receiving) simultaneously before the fusion and decoding stage, making it robust to various challenging scenarios (e.g., motion blur, occlusion) in VOS. Extensive experiments on five popular benchmarks (i.e., DAVIS16, FBMS, MCL, SegTrack-V2, and DAVSOD19) show that our FSNet outperforms other state-of-the-arts for both the VOS and video salient object detection tasks.


Figure 3: Qualitative results on five datasets, including DAVIS16, MCL, FBMS, SegTrack-V2, and DAVSOD19.

3. Usage

How to Inference?

  • Download the test dataset from Baidu Driver (PSW: aaw8) or Google Driver and save it at ./dataset/*.

  • Install necessary libraries: PyTorch 1.1+, scipy 1.2.2, PIL

  • Download the pre-trained weights from Baidu Driver (psw: 36lm) or Google Driver. Saving the pre-trained weights at ./snapshot/FSNet/2021-ICCV-FSNet-20epoch-new.pth

  • Just run python inference.py to generate the segmentation results.

  • About the post-processing technique DenseCRF we used in the original paper, you can find it here: DSS-CRF.

How to train our model from scratch?

Download the train dataset from Baidu Driver (PSW: u01t) or Google Driver Set1/Google Driver Set2 and save it at ./dataset/*. Our training pipeline consists of three steps:

  • First, train the model using the combination of static SOD dataset (i.e., DUTS) with 12,926 samples and U-VOS datasets (i.e., DAVIS16 & FBMS) with 2,373 samples.

    • Set --train_type='pretrain_rgb' and run python train.py in terminal
  • Second, train the model using the optical-flow map of U-VOS datasets (i.e., DAVIS16 & FBMS).

    • Set --train_type='pretrain_flow' and run python train.py in terminal
  • Third, train the model using the pair of frame and optical flow of U-VOS datasets (i.e., DAVIS16 & FBMS).

    • Set --train_type='finetune' and run python train.py in terminal

4. Benchmark

Unsupervised/Zero-shot Video Object Segmentation (U/Z-VOS) task

NOTE: In the U-VOS, all the prediction results are strictly binary. We only adopt the naive binarization algorithm (i.e., threshold=0.5) in our experiments.

  • Quantitative results (NOTE: The following results have slight improvement compared with the reported results in our conference paper):

    mean-J recall-J decay-J mean-F recall-F decay-F T
    FSNet (w/ CRF) 0.834 0.945 0.032 0.831 0.902 0.026 0.213
    FSNet (w/o CRF) 0.823 0.943 0.033 0.833 0.919 0.028 0.213
  • Pre-Computed Results: Please download the prediction results of FSNet, refer to Baidu Driver (psw: ojsl) or Google Driver.

  • Evaluation Toolbox: We use the standard evaluation toolbox from DAVIS16. (Note that all the pre-computed segmentations are downloaded from this link).

Video Salient Object Detection (V-SOD) task

NOTE: In the V-SOD, all the prediction results are non-binary.

4. Citation

@inproceedings{ji2021FSNet,
  title={Full-Duplex Strategy for Video Object Segmentation},
  author={Ji, Ge-Peng and Fu, Keren and Wu, Zhe and Fan, Deng-Ping and Shen, Jianbing and Shao, Ling},
  booktitle={IEEE ICCV},
  year={2021}
}

5. Acknowledgements

Many thanks to my collaborator Ph.D. Zhe Wu, who provides excellent work SCRN and design inspirations.

Owner
Daniel-Ji
Computer Vision & Medical Imaging
Daniel-Ji
Code for Paper Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning

Predicting Osteoarthritis Progression via Unsupervised Adversarial Representation Learning (c) Tianyu Han and Daniel Truhn, RWTH Aachen University, 20

Tianyu Han 7 Nov 22, 2022
Code for reproducing experiments in "Improved Training of Wasserstein GANs"

Improved Training of Wasserstein GANs Code for reproducing experiments in "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, Tensor

Ishaan Gulrajani 2.2k Jan 01, 2023
GEA - Code for Guided Evolution for Neural Architecture Search

Efficient Guided Evolution for Neural Architecture Search Usage Create a conda e

6 Jan 03, 2023
Predicting Event Memorability from Contextual Visual Semantics

Predicting Event Memorability from Contextual Visual Semantics

0 Oct 06, 2021
TransNet V2: Shot Boundary Detection Neural Network

TransNet V2: Shot Boundary Detection Neural Network This repository contains code for TransNet V2: An effective deep network architecture for fast sho

Tomáš Souček 212 Dec 27, 2022
Group Activity Recognition with Clustered Spatial Temporal Transformer

GroupFormer Group Activity Recognition with Clustered Spatial-TemporalTransformer Backbone Style Action Acc Activity Acc Config Download Inv3+flow+pos

28 Dec 12, 2022
U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI

U-Net for brain segmentation U-Net implementation in PyTorch for FLAIR abnormality segmentation in brain MRI based on a deep learning segmentation alg

562 Jan 02, 2023
Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors

Gas detection Gas detection for Raspberry Pi using ADS1x15 and MQ-2 sensors. Description The MQ-2 sensor can detect multiple gases (CO, H2, CH4, LPG,

Filip Š 15 Sep 30, 2022
The official PyTorch code implementation of "Human Trajectory Prediction via Counterfactual Analysis" in ICCV 2021.

Human Trajectory Prediction via Counterfactual Analysis (CausalHTP) The official PyTorch code implementation of "Human Trajectory Prediction via Count

46 Dec 03, 2022
This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation

This repository contains the database and code used in the paper Embedding Arithmetic for Text-driven Image Transformation (Guillaume Couairon, Holger

Meta Research 31 Oct 17, 2022
Array Camera Ptychography

Array Camera Ptychography This repository provides the code for the following papers: Schulz, Timothy J., David J. Brady, and Chengyu Wang. "Photon-li

Brady lab in Optical Sciences 1 Nov 15, 2021
A repo that contains all the mesh keys needed for mesh backend, along with a code example of how to use them in python

Mesh-Keys A repo that contains all the mesh keys needed for mesh backend, along with a code example of how to use them in python Have been seeing alot

Joseph 53 Dec 13, 2022
Deep Learning for Computer Vision final project

Deep Learning for Computer Vision final project

grassking100 1 Nov 30, 2021
RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues

RARA: Zero-shot Sim2Real Visual Navigation with Following Foreground Cues FGBG (foreground-background) pytorch package for defining and training model

Klaas Kelchtermans 1 Jun 02, 2022
Best Practices on Recommendation Systems

Recommenders What's New (February 4, 2021) We have a new relase Recommenders 2021.2! It comes with lots of bug fixes, optimizations and 3 new algorith

Microsoft 14.8k Jan 03, 2023
Official NumPy Implementation of Deep Networks from the Principle of Rate Reduction (2021)

Deep Networks from the Principle of Rate Reduction This repository is the official NumPy implementation of the paper Deep Networks from the Principle

Ryan Chan 49 Dec 16, 2022
Google Recaptcha solver.

byerecaptcha - Google Recaptcha solver. Model and some codes takes from embium's repository -Installation- pip install byerecaptcha -How to use- from

Vladislav Zenkevich 21 Dec 19, 2022
On Out-of-distribution Detection with Energy-based Models

On Out-of-distribution Detection with Energy-based Models This repository contains the code for the experiments conducted in the paper On Out-of-distr

Sven 19 Aug 07, 2022
SurfEmb (CVPR 2022) - SurfEmb: Dense and Continuous Correspondence Distributions

SurfEmb SurfEmb: Dense and Continuous Correspondence Distributions for Object Pose Estimation with Learnt Surface Embeddings Rasmus Laurvig Haugard, A

Rasmus Haugaard 56 Nov 19, 2022
A Structured Self-attentive Sentence Embedding

Structured Self-attentive sentence embeddings Implementation for the paper A Structured Self-Attentive Sentence Embedding, which was published in ICLR

Kaushal Shetty 488 Nov 28, 2022