Machine learning Bot detection technique, based on United States election dataset

Overview

Machine learning Bot detection technique, based on United States election dataset (2020).

Current github repo provides implementation described in paper: "Identification of Twitter Bots based on an Explainable ML Framework: the US 2020 Elections Case Study" accepted in ICWSM 2022 conference.

Code folder contain all scripts for:

  • feature selection
  • parameter fine tuning
  • final model performance evaluation

Developed Bot Detection ML framework was trained and tested over Twitter dataset.
The particular dataset was collected with use of Twitter API during the 2020 US Election period. During this period we manage to collect tweets/retweets that contain particular hashtags that are correlated with the 2020 US Election topic. We provide our dataset in the form of two separated files. In those files we provide already extracted features for each user that was labeled according to our labeling process.

  1. data/us_2020_election_data.csv
    • contain user features and labels that was active in twitter during the month of September
    • we utilize it during our training/validation/testing phase of our implementation
  2. data/us_2020_election_data_october.csv
    • is utilized in order to identify how a developed model can perform over the unseen data that was collected during the month of October.

Both files was labeled with use of Botometer and BotSentinel Bot Detection tools. We keep only a union of users where both tools agree if a particular account is bot or normal user. Created pipeline allow us to keep user labels as clear as possible. We remove user ids in order to keep private the user identity, we provide only labels and extracted features which do not provide any sensitive user information.

In the plot folder we store performance metrics results in the form of figures.

Execution flow:

  1. code/feature_selection.py
    • Provide file with selected features in code folder
  2. code/model_fine_tuning.py
    • Store parameters of best model after the fine-tuning
  3. code/performance_measurement.py
    • Evaluate selected model and generates figures of ROC and PR AUCs. Also provide SHAP figure that explain the model decision making based on 20 most important features.

Developed framework provides state of the art performance over the Twitter US Election data. Based on the performance of unseen data we assume that is possible utilization of developed methods over data more than one month after training data, since the performance drop is not significant.

Owner
Alexander Shevtsov
PhD candidate in Computer Science
Alexander Shevtsov
Introduction to AI assignment 1 HCM University of Technology, term 211

Sokoban Bot Introduction to AI assignment 1 HCM University of Technology, term 211 Abstract This is basically a solver for Sokoban game using Breadth-

Quang Minh 4 Dec 12, 2022
TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

TorchOk - The toolkit for fast Deep Learning experiments in Computer Vision

52 Dec 23, 2022
CVPR 2021 Challenge on Super-Resolution Space

Learning the Super-Resolution Space Challenge NTIRE 2021 at CVPR Learning the Super-Resolution Space challenge is held as a part of the 6th edition of

andreas 104 Oct 26, 2022
Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT

CheXbert: Combining Automatic Labelers and Expert Annotations for Accurate Radiology Report Labeling Using BERT CheXbert is an accurate, automated dee

Stanford Machine Learning Group 51 Dec 08, 2022
Learning Off-Policy with Online Planning, CoRL 2021

LOOP: Learning Off-Policy with Online Planning Accepted in Conference of Robot Learning (CoRL) 2021. Harshit Sikchi, Wenxuan Zhou, David Held Paper In

Harshit Sikchi 24 Nov 22, 2022
DFM: A Performance Baseline for Deep Feature Matching

DFM: A Performance Baseline for Deep Feature Matching Python (Pytorch) and Matlab (MatConvNet) implementations of our paper DFM: A Performance Baselin

143 Jan 02, 2023
Implementation of "Glancing Transformer for Non-Autoregressive Neural Machine Translation"

GLAT Implementation for the ACL2021 paper "Glancing Transformer for Non-Autoregressive Neural Machine Translation" Requirements Python = 3.7 Pytorch

117 Jan 09, 2023
Project page for our ICCV 2021 paper "The Way to my Heart is through Contrastive Learning"

The Way to my Heart is through Contrastive Learning: Remote Photoplethysmography from Unlabelled Video This is the official project page of our ICCV 2

36 Jan 06, 2023
PyTorch code to run synthetic experiments.

Code repository for Invariant Risk Minimization Source code for the paper: @article{InvariantRiskMinimization, title={Invariant Risk Minimization}

Facebook Research 345 Dec 12, 2022
git《Commonsense Knowledge Base Completion with Structural and Semantic Context》(AAAI 2020) GitHub: [fig1]

Commonsense Knowledge Base Completion with Structural and Semantic Context Code for the paper Commonsense Knowledge Base Completion with Structural an

AI2 96 Nov 05, 2022
Deep Compression for Dense Point Cloud Maps.

DEPOCO This repository implements the algorithms described in our paper Deep Compression for Dense Point Cloud Maps. How to get started (using Docker)

Photogrammetry & Robotics Bonn 67 Dec 06, 2022
[ICCV 2021 Oral] Deep Evidential Action Recognition

DEAR (Deep Evidential Action Recognition) Project | Paper & Supp Wentao Bao, Qi Yu, Yu Kong International Conference on Computer Vision (ICCV Oral), 2

Wentao Bao 80 Jan 03, 2023
Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification"

Code for "Steerable Pyramid Transform Enables Robust Left Ventricle Quantification" This is an end-to-end framework for accurate and robust left ventr

2 Jul 09, 2022
Reimplementation of Dynamic Multi-scale filters for Semantic Segmentation.

Paddle implementation of Dynamic Multi-scale filters for Semantic Segmentation.

Hongqiang.Wang 2 Nov 01, 2021
This repository contains the code and models for the following paper.

DC-ShadowNet Introduction This is an implementation of the following paper DC-ShadowNet: Single-Image Hard and Soft Shadow Removal Using Unsupervised

AuAgCu 65 Dec 27, 2022
Relative Human dataset, CVPR 2022

Relative Human (RH) contains multi-person in-the-wild RGB images with rich human annotations, including: Depth layers (DLs): relative depth relationsh

Yu Sun 112 Dec 02, 2022
Attention mechanism with MNIST dataset

[TensorFlow] Attention mechanism with MNIST dataset Usage $ python run.py Result Training Loss graph. Test Each figure shows input digit, attention ma

YeongHyeon Park 12 Jun 10, 2022
Open source simulator for autonomous vehicles built on Unreal Engine / Unity, from Microsoft AI & Research

Welcome to AirSim AirSim is a simulator for drones, cars and more, built on Unreal Engine (we now also have an experimental Unity release). It is open

Microsoft 13.8k Jan 05, 2023
Official implementation of the ICCV 2021 paper "Conditional DETR for Fast Training Convergence".

The DETR approach applies the transformer encoder and decoder architecture to object detection and achieves promising performance. In this paper, we handle the critical issue, slow training convergen

281 Dec 30, 2022
A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art

Benjin Zhu 1.4k Jan 05, 2023