Deep Compression for Dense Point Cloud Maps.

Overview

DEPOCO

This repository implements the algorithms described in our paper Deep Compression for Dense Point Cloud Maps.

How to get started (using Docker)

Dependenices nvida-docker

Install nvida-docker and follow these instructions

Data

You can download the dataset from here and link the dataset to the docker container by configuring the Makefile

DATASETS=<path-to-your-data>

Building the docker container

For building the Docker Container simply run

make build

in the root directory.

Running the Code

The first step is to run the docker container:

make run

The following commands assume to be run inside the docker container.

Training

For training a network we first have to create the config file with all the parameters. An example of this can be found in /depoco/config/depoco.yaml. Make sure to give each config file a unique experiment_id: ... to not override previous models. To train the network simply run

python3 trainer -cfg <path-to-your-config>

Evaluation

Evaluating the network on the test set can be done by:

python3 evaluate.py -cfg <path-to-your-config>

All results will be saved in a dictonary.

Plotting the results

We can plot the quantitative results e.g. by using Jupyter-Lab. An example of this is provided in depoco/notebooks/visualize.ipynb. Jupyter-Lab can be started in the Docker container by:

jupyter-lab  --ip 0.0.0.0 --no-browser --allow-root

The 8888 port is forwarded which allows us to use it as if it would be on the host machine.

Pretrained models

The config files and the pretrained weights of our models are stored in depoco/network_files/eX/. The results can be inspected by the jupyter notebook depoco/notebooks/visualize.ipynb.

How to get started (without Docker)

Installation

A list of all dependencies and install instructions can be derived from the Dockerfile.

Running the code

After installation the training and evaluation can be run as explained before.

Qualitative Results

Plotting the point clouds using open3d can be done by

pyhon3 evaluate -cfg <path-to-your-config>

This can not be done in the docker container and thus requires the installation on the local machine.

Citation

If you use this library for any academic work, please cite the original paper.

@article{wiesmann2021ral,
author = {L. Wiesmann and A. Milioto and X. Chen and C. Stachniss and J. Behley},
title = {{Deep Compression for Dense Point Cloud Maps}},
journal = {IEEE Robotics and Automation Letters (RA-L)},
volume = 6,
issue = 2,
pages = {2060-2067},
doi = {10.1109/LRA.2021.3059633},
year = 2021
}
Owner
Photogrammetry & Robotics Bonn
Photogrammetry & Robotics Lab at the University of Bonn
Photogrammetry & Robotics Bonn
A cross-document event and entity coreference resolution system, trained and evaluated on the ECB+ corpus.

A Comprehensive Comparison of Word Embeddings in Event & Entity Coreference Resolution. Introduction This repo contains experimental code derived from

2 May 09, 2022
Tool for working with Y-chromosome data from YFull and FTDNA

ycomp ycomp is a tool for working with Y-chromosome data from YFull and FTDNA. Run ycomp -h for information on how to use the program. Installation Th

Alexander Regueiro 2 Jun 18, 2022
Geometry-Aware Learning of Maps for Camera Localization (CVPR2018)

Geometry-Aware Learning of Maps for Camera Localization This is the PyTorch implementation of our CVPR 2018 paper "Geometry-Aware Learning of Maps for

NVIDIA Research Projects 321 Nov 26, 2022
Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space"

MotionCLIP Official Pytorch implementation of the paper "MotionCLIP: Exposing Human Motion Generation to CLIP Space". Please visit our webpage for mor

Guy Tevet 173 Dec 26, 2022
Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing

Cerberus Transformer: Joint Semantic, Affordance and Attribute Parsing Paper Introduction Multi-task indoor scene understanding is widely considered a

62 Dec 05, 2022
PyTorch package for the discrete VAE used for DALL·E.

Overview [Blog] [Paper] [Model Card] [Usage] This is the official PyTorch package for the discrete VAE used for DALL·E. Installation Before running th

OpenAI 9.5k Jan 05, 2023
Code of Periodic Activation Functions Induce Stationarity

Periodic Activation Functions Induce Stationarity This repository is the official implementation of the methods in the publication: L. Meronen, M. Tra

AaltoML 12 Jun 07, 2022
CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation

CDGAN CDGAN: Cyclic Discriminative Generative Adversarial Networks for Image-to-Image Transformation CDGAN Implementation in PyTorch This is the imple

Kancharagunta Kishan Babu 6 Apr 19, 2022
Implementation of character based convolutional neural network

Character Based CNN This repo contains a PyTorch implementation of a character-level convolutional neural network for text classification. The model a

Ahmed BESBES 248 Nov 21, 2022
Code for MarioNette: Self-Supervised Sprite Learning, in NeurIPS 2021

MarioNette | Webpage | Paper | Video MarioNette: Self-Supervised Sprite Learning Dmitriy Smirnov, Michaël Gharbi, Matthew Fisher, Vitor Guizilini, Ale

Dima Smirnov 28 Nov 18, 2022
Model Zoo for AI Model Efficiency Toolkit

We provide a collection of popular neural network models and compare their floating point and quantized performance.

Qualcomm Innovation Center 137 Jan 03, 2023
Parallel and High-Fidelity Text-to-Lip Generation; AAAI 2022 ; Official code

Parallel and High-Fidelity Text-to-Lip Generation This repository is the official PyTorch implementation of our AAAI-2022 paper, in which we propose P

Zhying 77 Dec 21, 2022
A library built upon PyTorch for building embeddings on discrete event sequences using self-supervision

pytorch-lifestream a library built upon PyTorch for building embeddings on discrete event sequences using self-supervision. It can process terabyte-si

Dmitri Babaev 103 Dec 17, 2022
Datasets for new state-of-the-art challenge in disentanglement learning

High resolution disentanglement datasets This repository contains the Falcor3D and Isaac3D datasets, which present a state-of-the-art challenge for co

NVIDIA Research Projects 37 May 26, 2022
DeepGNN is a framework for training machine learning models on large scale graph data.

DeepGNN Overview DeepGNN is a framework for training machine learning models on large scale graph data. DeepGNN contains all the necessary features in

Microsoft 45 Jan 01, 2023
A PyTorch Extension: Tools for easy mixed precision and distributed training in Pytorch

This repository holds NVIDIA-maintained utilities to streamline mixed precision and distributed training in Pytorch. Some of the code here will be included in upstream Pytorch eventually. The intenti

NVIDIA Corporation 6.9k Jan 03, 2023
Deformable DETR is an efficient and fast-converging end-to-end object detector.

Deformable DETR: Deformable Transformers for End-to-End Object Detection.

2k Jan 05, 2023
GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications

GPOEO GPOEO is a micro-intrusive GPU online energy optimization framework for iterative applications. We also implement ODPP [1] as a comparison. [1]

瑞雪轻飏 8 Sep 10, 2022
This repository consists of Blender python scripts and corresponding assets to generate variants of the CANDLE dataset

candle-simulator This repository consists of Blender python scripts and corresponding assets to generate variants of the IITH-CANDLE dataset. The rend

1 Dec 15, 2021
Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs

Differential Privacy for Heterogeneous Federated Learning : Utility & Privacy tradeoffs In this work, we propose an algorithm DP-SCAFFOLD(-warm), whic

19 Nov 10, 2022