SalGAN: Visual Saliency Prediction with Generative Adversarial Networks

Overview

SalGAN: Visual Saliency Prediction with Adversarial Networks

Junting Pan Cristian Canton Ferrer Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayrol Xavier Giro-i-Nieto
Junting Pan Cristian Canton Ferrer Kevin McGuinness Noel O'Connor Jordi Torres Elisa Sayrol Xavier Giro-i-Nieto

A joint collaboration between:

logo-insight logo-dcu logo-microsoft logo-facebook logo-bsc logo-upc
Insight Centre for Data Analytics Dublin City University (DCU) Microsoft Facebook Barcelona Supercomputing Center Universitat Politecnica de Catalunya (UPC)

Abstract

We introduce SalGAN, a deep convolutional neural network for visual saliency prediction trained with adversarial examples. The first stage of the network consists of a generator model whose weights are learned by back-propagation computed from a binary cross entropy (BCE) loss over downsampled versions of the saliency maps. The resulting prediction is processed by a discriminator network trained to solve a binary classification task between the saliency maps generated by the generative stage and the ground truth ones. Our experiments show how adversarial training allows reaching state-of-the-art performance across different metrics when combined with a widely-used loss function like BCE.

Slides

<iframe src="//www.slideshare.net/slideshow/embed_code/key/5cXl80Fm2c3ksg" width="595" height="485" frameborder="0" marginwidth="0" marginheight="0" scrolling="no" style="border:1px solid #CCC; border-width:1px; margin-bottom:5px; max-width: 100%;" allowfullscreen> </iframe>

Publication

Find the extended pre-print version of our work on arXiv. The shorter extended abstract presented as spotlight in the CVPR 2017 Scene Understanding Workshop (SUNw) is available here.

Image of the paper

Please cite with the following Bibtex code:

@InProceedings{Pan_2017_SalGAN,
author = {Pan, Junting and Canton, Cristian and McGuinness, Kevin and O'Connor, Noel E. and Torres, Jordi and Sayrol, Elisa and Giro-i-Nieto, Xavier and},
title = {SalGAN: Visual Saliency Prediction with Generative Adversarial Networks},
booktitle = {arXiv},
month = {January},
year = {2017}
}

You may also want to refer to our publication with the more human-friendly Chicago style:

Junting Pan, Cristian Canton, Kevin McGuinness, Noel E. O'Connor, Jordi Torres, Elisa Sayrol and Xavier Giro-i-Nieto. "SalGAN: Visual Saliency Prediction with Generative Adversarial Networks." arXiv. 2017.

Architecture

architecture-fig

Model parameters

The parameters to run SalGAN can be downloaded here:

If you wanted to train the model, you will also need this additional file

Visual Results

Qualitative saliency predictions

Datasets

Training

As explained in our paper, our networks were trained on the training and validation data provided by SALICON.

Test

Two different dataset were used for test:

Software frameworks

Our paper presents two convolutional neural networks, one correspends to the Generator (Saliency Prediction Network) and the another is the Discriminator for the adversarial training. To compute saliency maps only the Generator is needed.

SalGAN on Lasagne

SalGAN is implemented in Lasagne, which at its time is developed over Theano.

pip install -r https://raw.githubusercontent.com/imatge-upc/saliency-salgan-2017/master/requirements.txt

SalGAN on a docker

We have prepared this Docker container with all necessary dependencies for computing saliency maps with SalGAN. You will need to use nvidia-docker.

Using the container is like connecting via ssh to a machine. To start an interactive session run:

    >> sudo nvidia-docker run -it --entrypoint='bash' -w /home/ evamohe/salgan

This will open a terminal within the container located in the '/home' folder.

Yo will find Salgan code in "/home/salgan". So if you want to test the installation, within the container, run:

   >> cd /home/salgan/scripts
   >> THEANO_FLAGS=mode=FAST_RUN,device=gpu0,floatX=float32,lib.cnmem=0.5,optimizer_including=cudnn python 03-predict.py

That will process the sample images located in "/home/salgan/images" and store them in "/home/salgan/saliency". To exit the container, run:

   >> exit

You migh want to process your own data with your own custom scripts. For that, you can mount different local folders in the container. For example:

>> sudo nvidia-docker run -v $PATH_TO_MY_CODE:/home/code -v $PATH_TO_MY_DATA:/home/data -it --entrypoint='bash' -w /home/

will open a new session in the container, with '/home/code' and '/home/data' folders that will be share with your computer. If you edit your code locally, the changes will be updated automatically in the container. Similarly, all the files generated in '/home/data' will be available in your original data folder.

Usage

To train our model from scrath you need to run the following command:

THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32,lib.cnmem=1,optimizer_including=cudnn python 02-train.py

In order to run the test script to predict saliency maps, you can run the following command after specifying the path to you images and the path to the output saliency maps:

THEANO_FLAGS=mode=FAST_RUN,device=gpu,floatX=float32,lib.cnmem=1,optimizer_including=cudnn python 03-predict.py

With the provided model weights you should obtain the follwing result:

Image Stimuli Saliency Map

Download the pretrained VGG-16 weights from: vgg16.pkl

External implementation in PyTorch

Bat-Orgil Batsaikhan and Catherine Qi Zhao from the University of Minnesota released a PyTorch implementation in 2018 as part of their poster "Generative Adversarial Network for Videos and Saliency Map".

Acknowledgements

We would like to especially thank Albert Gil Moreno and Josep Pujal from our technical support team at the Image Processing Group at the UPC.

AlbertGil-photo JosepPujal-photo
Albert Gil Josep Pujal
We gratefully acknowledge the support of NVIDIA Corporation with the donation of the GeoForce GTX Titan Z and Titan X used in this work. logo-nvidia
The Image ProcessingGroup at the UPC is a SGR14 Consolidated Research Group recognized and sponsored by the Catalan Government (Generalitat de Catalunya) through its AGAUR office. logo-catalonia
This work has been developed in the framework of the projects BigGraph TEC2013-43935-R and Malegra TEC2016-75976-R, funded by the Spanish Ministerio de Economía y Competitividad and the European Regional Development Fund (ERDF). logo-spain
This publication has emanated from research conducted with the financial support of Science Foundation Ireland (SFI) under grant number SFI/12/RC/2289. logo-ireland

Contact

If you have any general doubt about our work or code which may be of interest for other researchers, please use the public issues section on this github repo. Alternatively, drop us an e-mail at mailto:[email protected].

<script> (function(i,s,o,g,r,a,m){i['GoogleAnalyticsObject']=r;i[r]=i[r]||function(){ (i[r].q=i[r].q||[]).push(arguments)},i[r].l=1*new Date();a=s.createElement(o), m=s.getElementsByTagName(o)[0];a.async=1;a.src=g;m.parentNode.insertBefore(a,m) })(window,document,'script','https://www.google-analytics.com/analytics.js','ga'); ga('create', 'UA-7678045-13', 'auto'); ga('send', 'pageview'); </script>
Owner
Image Processing Group - BarcelonaTECH - UPC
Image Processing Group - BarcelonaTECH - UPC
Official PyTorch Implementation of paper "NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting", EGSR 2021.

NeLF: Neural Light-transport Field for Single Portrait View Synthesis and Relighting Official PyTorch Implementation of paper "NeLF: Neural Light-tran

Ken Lin 38 Dec 26, 2022
利用Tensorflow实现基于CNN的中文短文本分类

Text Classification with CNN 使用卷积神经网络进行中文文本分类 CNN做句子分类的论文可以参看: Convolutional Neural Networks for Sentence Classification 还可以去读dennybritz大牛的博客:Implemen

Jeremiah 4 Nov 08, 2022
Keyword-BERT: Keyword-Attentive Deep Semantic Matching

project discription An implementation of the Keyword-BERT model mentioned in my paper Keyword-Attentive Deep Semantic Matching (Plz cite this github r

1 Nov 14, 2021
SANet: A Slice-Aware Network for Pulmonary Nodule Detection

SANet: A Slice-Aware Network for Pulmonary Nodule Detection This paper (SANet) has been accepted and early accessed in IEEE TPAMI 2021. This code and

Jie Mei 39 Dec 17, 2022
Computer Vision and Pattern Recognition, NUS CS4243, 2022

CS4243_2022 Computer Vision and Pattern Recognition, NUS CS4243, 2022 Cloud Machine #1 : Google Colab (Free GPU) Follow this Notebook installation : h

Xavier Bresson 142 Dec 15, 2022
A Factor Model for Persistence in Investment Manager Performance

Factor-Model-Manager-Performance A Factor Model for Persistence in Investment Manager Performance I apply methods and processes similar to those used

Omid Arhami 1 Dec 01, 2021
A reimplementation of DCGAN in PyTorch

DCGAN in PyTorch A reimplementation of DCGAN in PyTorch. Although there is an abundant source of code and examples found online (as well as an officia

Diego Porres 6 Jan 08, 2022
Multi-Modal Machine Learning toolkit based on PaddlePaddle.

简体中文 | English PaddleMM 简介 飞桨多模态学习工具包 PaddleMM 旨在于提供模态联合学习和跨模态学习算法模型库,为处理图片文本等多模态数据提供高效的解决方案,助力多模态学习应用落地。 近期更新 2022.1.5 发布 PaddleMM 初始版本 v1.0 特性 丰富的任务

njustkmg 520 Dec 28, 2022
[ICCV 2021 (oral)] Planar Surface Reconstruction from Sparse Views

Planar Surface Reconstruction From Sparse Views Linyi Jin, Shengyi Qian, Andrew Owens, David F. Fouhey University of Michigan ICCV 2021 (Oral) This re

Linyi Jin 89 Jan 05, 2023
People movement type classifier with YOLOv4 detection and SORT tracking.

Movement classification The goal of this project would be movement classification of people, in other words, walking (normal and fast) and running. Yo

4 Sep 21, 2021
[Preprint] ConvMLP: Hierarchical Convolutional MLPs for Vision, 2021

Convolutional MLP ConvMLP: Hierarchical Convolutional MLPs for Vision Preprint link: ConvMLP: Hierarchical Convolutional MLPs for Vision By Jiachen Li

SHI Lab 143 Jan 03, 2023
Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021)

Tracing Versus Freehand for Evaluating Computer-Generated Drawings (SIGGRAPH 2021) Zeyu Wang, Sherry Qiu, Nicole Feng, Holly Rushmeier, Leonard McMill

Zach Zeyu Wang 23 Dec 09, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 27, 2022
CDTrans: Cross-domain Transformer for Unsupervised Domain Adaptation

[ICCV2021] TransReID: Transformer-based Object Re-Identification [pdf] The official repository for TransReID: Transformer-based Object Re-Identificati

DamoCV 569 Dec 30, 2022
Deep Learning tutorials in jupyter notebooks.

DeepSchool.io Sign up here for Udemy Course on Machine Learning (Use code DEEPSCHOOL-MARCH to get 85% off course). Goals Make Deep Learning easier (mi

Sachin Abeywardana 1.8k Dec 28, 2022
Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays

Numbering permanent and deciduous teeth via deep instance segmentation in panoramic X-rays In this repo, you will find the instructions on how to requ

Intelligent Vision Research Lab 4 Jul 21, 2022
Code for "Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance" at NeurIPS 2021

Finding Regions of Heterogeneity in Decision-Making via Expected Conditional Covariance Justin Lim, Christina X Ji, Michael Oberst, Saul Blecker, Leor

Sontag Lab 3 Feb 03, 2022
This is a clean and robust Pytorch implementation of DQN and Double DQN.

DQN/DDQN-Pytorch This is a clean and robust Pytorch implementation of DQN and Double DQN. Here is the training curve: All the experiments are trained

XinJingHao 15 Dec 27, 2022
Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Features"

EDM-subgenre-classifier This repository contains the code for "Deep Learning Based EDM Subgenre Classification using Mel-Spectrogram and Tempogram Fea

11 Dec 20, 2022
Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation

Neural Reprojection Error: Merging Feature Learning and Camera Pose Estimation This is the official repository for our paper Neural Reprojection Error

Hugo Germain 78 Dec 01, 2022