The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

Overview

AICITY2021_Track2_DMT

The 1st place solution of track2 (Vehicle Re-Identification) in the NVIDIA AI City Challenge at CVPR 2021 Workshop.

Introduction

Detailed information of NVIDIA AI City Challenge 2021 can be found here.

The code is modified from AICITY2020_DMT_VehicleReID, TransReID and reid_strong baseline.

Get Started

  1. cd to folder where you want to download this repo

  2. Run git clone https://github.com/michuanhaohao/AICITY2021_Track2_DMT.git

  3. Install dependencies: pip install requirements.txt

    We use cuda 11.0/python 3.7/torch 1.6.0/torchvision 0.7.0 for training and testing.

  4. Prepare Datasets Download Original dataset, Cropped_dataset, and SPGAN_dataset.

├── AIC21/
│   ├── AIC21_Track2_ReID/
│   	├── image_train/
│   	├── image_test/
│   	├── image_query/
│   	├── train_label.xml
│   	├── ...
│   	├── training_part_seg/
│   	    ├── cropped_patch/
│   	├── cropped_aic_test
│   	    ├── image_test/
│   	    ├── image_query/		
│   ├── AIC21_Track2_ReID_Simulation/
│   	├── sys_image_train/
│   	├── sys_image_train_tr/
  1. Put pre-trained models into ./pretrained/
    • resnet101_ibn_a-59ea0ac6.pth, densenet169_ibn_a-9f32c161.pth, resnext101_ibn_a-6ace051d.pth and se_resnet101_ibn_a-fabed4e2.pth can be downloaded from IBN-Net
    • resnest101-22405ba7.pth can be downloaded from ResNest
    • jx_vit_base_p16_224-80ecf9dd.pth can be downloaded from here

Trainint and Test

We utilize 1 GPU (32GB) for training. You can train and test one backbone as follow.

# ResNext101-IBN-a
python train.py --config_file configs/stage1/resnext101a_384.yml MODEL.DEVICE_ID "('0')"
python train_stage2_v1.py --config_file configs/stage2/resnext101a_384.yml MODEL.DEVICE_ID "('0')" OUTPUT_DIR './logs/stage2/resnext101a_384/v1'
python train_stage2_v2.py --config_file configs/stage2/resnext101a_384.yml MODEL.DEVICE_ID "('0')" OUTPUT_DIR './logs/stage2/resnext101a_384/v2'

python test.py --config_file configs/stage2/101a_384.yml MODEL.DEVICE_ID "('0')" TEST.WEIGHT './logs/stage2/resnext101a_384/v1/resnext101_ibn_a_2.pth' OUTPUT_DIR './logs/stage2/resnext101a_384/v1'
python test.py --config_file configs/stage2/101a_384.yml MODEL.DEVICE_ID "('0')" TEST.WEIGHT './logs/stage2/resnext101a_384/v2/resnext101_ibn_a_2.pth' OUTPUT_DIR './logs/stage2/resnext101a_384/v2'

You should train camera and viewpoint models before the inference stage. You also can directly use our trained results (track_cam_rk.npy and track_view_rk.npy):

python train_cam.py --config_file configs/camera_view/camera_101a.yml
python train_view.py --config_file configs/camera_view/view_101a.yml

You can train all eight backbones by checking run.sh. Then, you can ensemble all results:

python ensemble.py

All trained models can be downloaded from here

Leaderboard

TeamName mAP Link
DMT(Ours) 0.7445 code
NewGeneration 0.7151 code
CyberHu 0.6550 code

Citation

If you find our work useful in your research, please consider citing:

@inproceedings{luo2021empirical,
 title={An Empirical Study of Vehicle Re-Identification on the AI City Challenge},
 author={Luo, Hao and Chen, Weihua and Xu Xianzhe and Gu Jianyang and Zhang, Yuqi and Chong Liu and Jiang Qiyi and He, Shuting and Wang, Fan and Li, Hao},
 booktitle={Proc. CVPR Workshops},
 year={2021}
}
Owner
Hao Luo
Ph.D., Alibaba DAMO Academy&Zhejiang University
Hao Luo
[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

DataFree A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation" Authors: Gongfa

ZJU-VIPA 47 Jan 09, 2023
A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM's

sign-language-detection A Sign Language detection project using Mediapipe landmark detection and Tensorflow LSTM. The project is built for a vocabular

Hashim 4 Feb 06, 2022
Simultaneous NMT/MMT framework in PyTorch

This repository includes the codes, the experiment configurations and the scripts to prepare/download data for the Simultaneous Machine Translation wi

<a href=[email protected]"> 37 Sep 29, 2022
MOpt-AFL provided by the paper "MOPT: Optimized Mutation Scheduling for Fuzzers"

MOpt-AFL 1. Description MOpt-AFL is a AFL-based fuzzer that utilizes a customized Particle Swarm Optimization (PSO) algorithm to find the optimal sele

172 Dec 18, 2022
The official implementation of Equalization Loss v1 & v2 (CVPR 2020, 2021) based on MMDetection.

The Equalization Losses for Long-tailed Object Detection and Instance Segmentation This repo is official implementation CVPR 2021 paper: Equalization

Jingru Tan 129 Dec 16, 2022
PyBullet CartPole and Quadrotor environments—with CasADi symbolic a priori dynamics—for learning-based control and reinforcement learning

safe-control-gym Physics-based CartPole and Quadrotor Gym environments (using PyBullet) with symbolic a priori dynamics (using CasADi) for learning-ba

Dynamic Systems Lab 300 Dec 28, 2022
Code for: Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification

Imagine by Reasoning: A Reasoning-Based Implicit Semantic Data Augmentation for Long-Tailed Classification Prerequisite PyTorch = 1.2.0 Python3 torch

16 Dec 14, 2022
Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets).

TOQ-Nets-PyTorch-Release Pytorch implementation for the Temporal and Object Quantification Networks (TOQ-Nets). Temporal and Object Quantification Net

Zhezheng Luo 9 Jun 30, 2022
Consecutive-Subsequence - Simple software to calculate susequence with highest sum

Simple software to calculate susequence with highest sum This repository contain

Gbadamosi Farouk 1 Jan 31, 2022
Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set (CVPRW 2019). A PyTorch implementation.

Accurate 3D Face Reconstruction with Weakly-Supervised Learning: From Single Image to Image Set —— PyTorch implementation This is an unofficial offici

Sicheng Xu 833 Dec 28, 2022
African language Speech Recognition - Speech-to-Text

Swahili-Speech-To-Text Table of Contents Swahili-Speech-To-Text Overview Scenario Approach Project Structure data: models: notebooks: scripts tests: l

2 Jan 05, 2023
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
Repository for tackling Kaggle Ultrasound Nerve Segmentation challenge using Torchnet.

Ultrasound Nerve Segmentation Challenge using Torchnet This repository acts as a starting point for someone who wants to start with the kaggle ultraso

Qure.ai 46 Jul 18, 2022
Offline Reinforcement Learning with Implicit Q-Learning

Offline Reinforcement Learning with Implicit Q-Learning This repository contains the official implementation of Offline Reinforcement Learning with Im

Ilya Kostrikov 126 Jan 06, 2023
SmoothGrad implementation in PyTorch

SmoothGrad implementation in PyTorch PyTorch implementation of SmoothGrad: removing noise by adding noise. Vanilla Gradients SmoothGrad Guided backpro

SSKH 143 Jan 05, 2023
Karate Club: An API Oriented Open-source Python Framework for Unsupervised Learning on Graphs (CIKM 2020)

Karate Club is an unsupervised machine learning extension library for NetworkX. Please look at the Documentation, relevant Paper, Promo Video, and Ext

Benedek Rozemberczki 1.8k Jan 07, 2023
An official implementation of "SFNet: Learning Object-aware Semantic Correspondence" (CVPR 2019, TPAMI 2020) in PyTorch.

PyTorch implementation of SFNet This is the implementation of the paper "SFNet: Learning Object-aware Semantic Correspondence". For more information,

CV Lab @ Yonsei University 87 Dec 30, 2022
TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

TorchGeo is a PyTorch domain library, similar to torchvision, that provides datasets, transforms, samplers, and pre-trained models specific to geospatial data.

Microsoft 1.3k Dec 30, 2022
Simple object detection app with streamlit

object-detection-app Simple object detection app with streamlit. Upload an image and perform object detection. Adjust the confidence threshold to see

Robin Cole 68 Jan 02, 2023
Model Zoo for MindSpore

Welcome to the Model Zoo for MindSpore In order to facilitate developers to enjoy the benefits of MindSpore framework, we will continue to add typical

MindSpore 226 Jan 07, 2023