[IJCAI-2021] A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

Overview

DataFree

A benchmark of data-free knowledge distillation from paper "Contrastive Model Inversion for Data-Free Knowledge Distillation"

Authors: Gongfan Fang, Jie Song, Xinchao Wang, Chengchao Shen, Xingen Wang, Mingli Song

CMI (this work) DeepInv
ZSKT DFQ

Results

1. CIFAR-10

Method resnet-34
resnet-18
vgg-11
resnet-18
wrn-40-2
wrn-16-1
wrn-40-2
wrn-40-1
wrn-40-2
wrn-16-2
T. Scratch 95.70 92.25 94.87 94.87 94.87
S. Scratch 95.20 95.20 91.12 93.94 93.95
DAFL 92.22 81.10 65.71 81.33 81.55
ZSKT 93.32 89.46 83.74 86.07 89.66
DeepInv 93.26 90.36 83.04 86.85 89.72
DFQ 94.61 90.84 86.14 91.69 92.01
CMI 94.84 91.13 90.01 92.78 92.52

2. CIFAR-100

Method resnet-34
resnet-18
vgg-11
resnet-18
wrn-40-2
wrn-16-1
wrn-40-2
wrn-40-1
wrn-40-2
wrn-16-2
T. Scratch 78.05 71.32 75.83 75.83 75.83
S. Scratch 77.10 77.01 65.31 72.19 73.56
DAFL 74.47 57.29 22.50 34.66 40.00
ZSKT 67.74 34.72 30.15 29.73 28.44
DeepInv 61.32 54.13 53.77 61.33 61.34
DFQ 77.01 68.32 54.77 62.92 59.01
CMI 77.04 70.56 57.91 68.88 68.75

Quick Start

1. Visualize the inverted samples

Results will be saved as checkpoints/datafree-cmi/synthetic-cmi_for_vis.png

bash scripts/cmi/cmi_cifar10_for_vis.sh

2. Reproduce our results

Note: This repo was refactored from our experimental code and is still under development. I'm struggling to find the appropriate hyperparams for every methods (°ー°〃). So far, we only provide the hyperparameters to reproduce CIFAR-10 results for wrn-40-2 => wrn-16-1. You may need to tune the hyper-parameters for other models and datasets. More resources will be uploaded in the future update.

To reproduce our results, please download pre-trained teacher models from Dropbox-Models (266 MB) and extract them as checkpoints/pretrained. Also a pre-inverted data set with ~50k samples is available for wrn-40-2 teacher on CIFAR-10. You can download it from Dropbox-Data (133 MB) and extract them to run/cmi-preinverted-wrn402/.

  • Non-adversarial CMI: you can train a student model on inverted data directly. It should reach the accuracy of ~87.38% on CIFAR-10 as reported in Figure 3.

    bash scripts/cmi/nonadv_cmi_cifar10_wrn402_wrn161.sh
    
  • Adversarial CMI: or you can apply the adversarial distillation based on the pre-inverted data, where ~10k (256x40) new samples will be generated to improve the student. It should reach the accuracy of ~90.01% on CIFAR-10 as reported in Table 1.

    bash scripts/cmi/adv_cmi_cifar10_wrn402_wrn161.sh
    
  • Scratch CMI: It is OK to run the cmi algorithm wihout any pre-inverted data, but the student may overfit to early samples due to the limited data amount. It should reach the accuracy of ~88.82% on CIFAR-10, slightly worse than our reported results (90.01%).

    bash scripts/cmi/scratch_cmi_cifar10_wrn402_wrn161.sh
    

3. Scratch training

python train_scratch.py --model wrn40_2 --dataset cifar10 --batch-size 256 --lr 0.1 --epoch 200 --gpu 0

4. Vanilla KD

# KD with original training data (beta>0 to use hard targets)
python vanilla_kd.py --teacher wrn40_2 --student wrn16_1 --dataset cifar10 --transfer_set cifar10 --beta 0.1 --batch-size 128 --lr 0.1 --epoch 200 --gpu 0 

# KD with unlabeled data
python vanilla_kd.py --teacher wrn40_2 --student wrn16_1 --dataset cifar10 --transfer_set cifar100 --beta 0 --batch-size 128 --lr 0.1 --epoch 200 --gpu 0 

# KD with unlabeled data from a specified folder
python vanilla_kd.py --teacher wrn40_2 --student wrn16_1 --dataset cifar10 --transfer_set run/cmi --beta 0 --batch-size 128 --lr 0.1 --epoch 200 --gpu 0 

5. Data-free KD

bash scripts/xxx/xxx.sh # e.g. scripts/zskt/zskt_cifar10_wrn402_wrn161.sh

Hyper-parameters used by different methods:

Method adv bn oh balance act cr GAN Example
DAFL - - - scripts/dafl_cifar10.sh
ZSKT - - - - - scripts/zskt_cifar10.sh
DeepInv - - - - scripts/deepinv_cifar10.sh
DFQ - - scripts/dfq_cifar10.sh
CMI - - scripts/cmi_cifar10_scratch.sh

4. Use your models/datasets

You can register your models and datasets in registry.py by modifying NORMALIZE_DICT, MODEL_DICT and get_dataset. Then you can run the above commands to train your own models. As DAFL requires intermediate features from the penultimate layer, your model should accept an return_features=True parameter and return a (logits, features) tuple for DAFL.

5. Implement your algorithms

Your algorithms should inherent datafree.synthesis.BaseSynthesizer to implement two interfaces: 1) BaseSynthesizer.synthesize takes several steps to craft new samples and return an image dict for visualization; 2) BaseSynthesizer.sample fetches a batch of training data for KD.

Citation

If you found this work useful for your research, please cite our paper:

@misc{fang2021contrastive,
      title={Contrastive Model Inversion for Data-Free Knowledge Distillation}, 
      author={Gongfan Fang and Jie Song and Xinchao Wang and Chengchao Shen and Xingen Wang and Mingli Song},
      year={2021},
      eprint={2105.08584},
      archivePrefix={arXiv},
      primaryClass={cs.AI}
}

Reference

Owner
ZJU-VIPA
Laboratory of Visual Intelligence and Pattern Analysis
ZJU-VIPA
Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger.

Init Use VITS and Opencpop to develop singing voice synthesis; Maybe it will VISinger. 本项目基于 https://github.com/jaywalnut310/vits https://github.com/S

AmorTX 107 Dec 23, 2022
Kaggle Lyft Motion Prediction for Autonomous Vehicles 4th place solution

Lyft Motion Prediction for Autonomous Vehicles Code for the 4th place solution of Lyft Motion Prediction for Autonomous Vehicles on Kaggle. Discussion

44 Jun 27, 2022
GPU Accelerated Non-rigid ICP for surface registration

GPU Accelerated Non-rigid ICP for surface registration Introduction Preivous Non-rigid ICP algorithm is usually implemented on CPU, and needs to solve

Haozhe Wu 144 Jan 04, 2023
A crash course in six episodes for software developers who want to become machine learning practitioners.

Featured code sample tensorflow-planespotting Code from the Google Cloud NEXT 2018 session "Tensorflow, deep learning and modern convnets, without a P

Google Cloud Platform 2.6k Jan 08, 2023
SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning

Datasets | Website | Raw Data | OpenReview SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning Christopher

67 Dec 17, 2022
Code for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in Deep Latent Space"

SRHEN This is a better and simpler implementation for "SRHEN: Stepwise-Refining Homography Estimation Network via Parsing Geometric Correspondences in

1 Oct 28, 2022
Offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation

Shunted Transformer This is the offical implementation of Shunted Self-Attention via Multi-Scale Token Aggregation by Sucheng Ren, Daquan Zhou, Shengf

156 Dec 27, 2022
Churn-Prediction-Project - In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class.

Churn-Prediction-Project In this project, a churn prediction model is developed for a private bank as a term project for Data Mining class. Project in

1 Jan 03, 2022
FAIR's research platform for object detection research, implementing popular algorithms like Mask R-CNN and RetinaNet.

Detectron is deprecated. Please see detectron2, a ground-up rewrite of Detectron in PyTorch. Detectron Detectron is Facebook AI Research's software sy

Facebook Research 25.5k Jan 07, 2023
An unreferenced image captioning metric (ACL-21)

UMIC This repository provides an unferenced image captioning metric from our ACL 2021 paper UMIC: An Unreferenced Metric for Image Captioning via Cont

hwanheelee 14 Nov 20, 2022
catch-22: CAnonical Time-series CHaracteristics

catch22 - CAnonical Time-series CHaracteristics About catch22 is a collection of 22 time-series features coded in C that can be run from Python, R, Ma

Carl H Lubba 229 Oct 21, 2022
Editing a classifier by rewriting its prediction rules

This repository contains the code and data for our paper: Editing a classifier by rewriting its prediction rules Shibani Santurkar*, Dimitris Tsipras*

Madry Lab 86 Dec 27, 2022
A code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Vanderhaeghe, and Yotam Gingold from SIGGRAPH Asia 2020.

A Benchmark for Rough Sketch Cleanup This is the code repository associated with the paper A Benchmark for Rough Sketch Cleanup by Chuan Yan, David Va

33 Dec 18, 2022
PyTorch wrapper for Taichi data-oriented class

Stannum PyTorch wrapper for Taichi data-oriented class PRs are welcomed, please see TODOs. Usage from stannum import Tin import torch data_oriented =

86 Dec 23, 2022
Model-based 3D Hand Reconstruction via Self-Supervised Learning, CVPR2021

S2HAND: Model-based 3D Hand Reconstruction via Self-Supervised Learning S2HAND presents a self-supervised 3D hand reconstruction network that can join

Yujin Chen 72 Dec 12, 2022
Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions

Using Clinical Drug Representations for Improving Mortality and Length of Stay Predictions Usage Clone the code to local. https://github.com/tanlab/MI

Computational Biology and Machine Learning lab @ TOBB ETU 3 Oct 18, 2022
Depression Asisstant GDSC Challenge Solution

Depression Asisstant can help you give solution. Please using Python version 3.9.5 for contribute.

Ananda Rauf 1 Jan 30, 2022
Model that predicts the probability of a Twitter user being anti-vaccination.

stylebody {text-align: justify}/style AVAXTAR: Anti-VAXx Tweet AnalyzeR AVAXTAR is a python package to identify anti-vaccine users on twitter. The

10 Sep 27, 2022
(Python, R, C/C++) Isolation Forest and variations such as SCiForest and EIF, with some additions (outlier detection + similarity + NA imputation)

IsoTree Fast and multi-threaded implementation of Extended Isolation Forest, Fair-Cut Forest, SCiForest (a.k.a. Split-Criterion iForest), and regular

141 Dec 29, 2022
A transformer-based method for Healthcare Image Captioning in Vietnamese

vieCap4H Challenge 2021: A transformer-based method for Healthcare Image Captioning in Vietnamese This repo GitHub contains our solution for vieCap4H

Doanh B C 4 May 05, 2022