Benchmarks for the Optimal Power Flow Problem

Overview

Power Grid Lib - Optimal Power Flow

This benchmark library is curated and maintained by the IEEE PES Task Force on Benchmarks for Validation of Emerging Power System Algorithms and is designed to evaluate a well established version of the the AC Optimal Power Flow problem. This introductory video and detailed report present the motivations and goals of this benchmark library. In particular, these cases are designed for benchmarking algorithms that solve the following Non-Convex Nonlinear Program,

  The Mathematical Model of the Optimal Power Flow Problem  

A detailed description of this mathematical model is available here. All of the cases files are curated in the MATPOWER data format. Open-source reference implementations are available in MATPOWER and PowerModels.jl and baseline results are reported in BASELINE.md.

Problem Variants

These cases may also be useful for benchmarking the following variants of the Optimal Power Flow problem,

  • DC Optimal Power Flow
  • AC Optimal Transmission Switching
  • DC Optimal Transmission Switching

That said, these cases are curated with the AC Optimal Power Flow problem in mind. Application to other domains and problem variants should be done with discretion.

Case File Overview

A forthcoming technical report will detail the sources, motivations, and procedures for curating these case files.

In this repository the network data files are organized into the following three broad groups:

  • /*.m - base case benchmarks as originally specified
  • /api/*.m - heavily loaded test cases (i.e. binding thermal limit constraints)
  • /sad/*.m - small phase angle difference cases (i.e. binding phase angle difference constraints)

Contributions

All case files are provided under a Creative Commons Attribution License, which allows anyone to share or adapt these cases as long as they give appropriate credit to the orginal author, provide a link to the license, and indicate if changes were made.

Community-based recommendations and contributions are welcome and encouraged in all PGLib repositories. Please feel free to submit comments and questions in the issue tracker. Corrections and new network contributions are welcome via pull requests. All data contributions are subject to a quality assurance review by the repository curator(s).

Citation Guidelines

This repository is not static. Consequently, it is critically important to indicate the version number when referencing this repository in scholarly work.

Users of this these cases are encouraged to cite the original source documents that are indicated in the file headers and the achrive report.

Comments
  • DC Baselines, Constraints, and Inf

    DC Baselines, Constraints, and Inf

    Hello, I have some related questions about the DC OPF baselines.

    1. It seems that for many of the typical operating conditions, the DC approximation better minimizes the cost than the full AC solution. Is this expected? Does this factor in any constraint violations?

    2. In some of the small angle difference cases, the objective values for the DC approximation are listed as "Inf". Does that indicate a constraint violation?

    opened by ElPiloto 5
  • radial test cases

    radial test cases

    It seems none of the test cases in pglib-opf are radial? That makes it hard to use any of these benchmarks to use/extend them for models that require a consistent definition of upstream/downstream, e.g. as in [1] below.

    I recall that the NESTA archive had a /rad m file collection. Was there any discussion on including that in pglib-opf? What happened to it?

    [1] Dvorkin, V., Fioretto, F., Van Hentenryck, P., Kazempour, J., & Pinson, P. (2020). Differentially Private Optimal Power Flow for Distribution Grids, 1, 1–9. Retrieved from http://arxiv.org/abs/2004.03921

    opened by frederikgeth 5
  • Help In SDP-Relaxation method for solving OPF Problem

    Help In SDP-Relaxation method for solving OPF Problem

    Hello Sir, i came to know about you from your videos of Convex Relaxations in Youtube... Sir i need help from you, i am stuck in my project work....i am trying to find an optimze a system 3m9b for test....

    and i wrote the optimization problem like this.... for i=1:1 cvx_begin cvx_solver sedumi

    variables u(npv,1) variable W(2n,2n) symmetric summ=trace(YYreal(:,:,1)*W); for i=2:n summ=summ+trace(YYreal(:,:,i)*W); end for i=1:npv u(i,1)==trace(YYreal(:,:,i+npq)W);
    (This u contais the PV buses active power generation...(whose optimal value has to be found)) end minimize(w
    (sum(u)+trace(YYreal(:,:,n)*W)))

    subject to for i=1:npq (this are equality constraints "calculated active power=specified active power" for pv&pq buses) trace(YYreal(:,:,i)*W)-(Pg(i,1)-Pl(i,1))==0; trace(YYreal(:,:,i)*W)-(Pg(i,1)-Pl(i,1))==0; end for i=1:npv (this bounds i thought to apply after getting a local optimal solution from Newtons Method) trace(YYreal(:,:,i+npq)*W)+Pl(i+npq,1)>=-0.2 trace(YYreal(:,:,i+npq)*W)+Pl(i+npq,1)<=3 end

    for i=1:npq (this are equality constraints "calculated reactive power=specified reactive power" for only pq buses) trace(YYimag(:,:,i)*W)-(Qg(i,1)-Ql(i,1))==0; trace(YYimag(:,:,i)*W)-(Qg(i,1)-Ql(i,1))==0; end

    W==semidefinite(2*n); W>=0; cvx_end w=w+1 for i=1:npv Pg(i+npq,1)=trace(YYreal(:,:,i+npq)*W)+Pl(i+npq,1); end end

    Sir, in the paper it is "Zero Duality Gap In Optimal Power Flow" that rank of W matrix variable should come=1 when the duality gap is "0". and for that we applied weight method.(w is the weight)..

    Sir.. for some values of w i get solution as 'NAN'. and for some i get an optimal solution...but the 'W matrix' never comes of rank 1...

    i dont know where i am going wrong...but please help me with this....

    opened by 12146 1
  • Line limits units (`rateA`)

    Line limits units (`rateA`)

    Hi, first, thanks for your work aggregating and building this library!

    I'm trying to use the 1354pegase case and am implementing my own simplified opf model where I want to impose line current constraints for line l = (i,j) according to

    (|y_ij| |V_i - V_j|)^2 <= rhs
    

    for V_i, V_j the complex voltages at buses i and j and |y_ij| is the magnitude of the (i,j) element of the admittance matrix. (Btw, I'm ignoring tap adjustments now...)

    However, I'm not sure what the units of the rhs should be from the pglib case. According to Table V of the report (https://arxiv.org/abs/1908.02788), it seems that rateA is a thermal limit that was determined by the TL-UB method from Section V.B.2. Does this mean that the rateA is already normalized by baseMVA and given in p.u. form? Or should I divide rateA by 100 to get the p.u. (and then square it to set the value of the rhs).

    Thanks!

    opened by jacob-roth 1
  • Tranformer Parameter Checks

    Tranformer Parameter Checks

    In some cases all tap settings are 1.0, I check should be made so that this only occurs when the value is not 1.0 or the branch is connecting two voltage levels.

    opened by ccoffrin 1
  • Inverted Generator Bounds

    Inverted Generator Bounds

    Some inactive generators have infeasible active power bounds (i.e. pmax < pmin). Resolve this by ensuring,

    pmin = min(pmin,pmax)
    pmax = min(pmin,pmax)
    

    in all generators.

    opened by ccoffrin 0
  • Generator LB higher than UB in 1888_rte__api

    Generator LB higher than UB in 1888_rte__api

    In pglib_opf_case1888_rte__api.m, the real power lower bound for the generator at bus 1689 (line 2,044 of the `.m' file) is 280.0, but the upper bound has been modified to be 64 (from 930 in the original case). Is this intentional? If so, what does it mean if the generator is turned on?

    Thank you for your help!

    opened by emma58 2
  • Error when solving case89_pegase__api and case240_pserc__api

    Error when solving case89_pegase__api and case240_pserc__api

    Hello,

    I got the following error when solving OPF for 2 test cases: case89_pegase__api and case240_pserc__api with the MATPOWER function runopf. It seems that there is a problem when generator bound Pmax is 0.

    Error using makeAvl (line 52) makeAvl: either Qmin or Qmax must be equal to zero for each dispatchable load.

    Error in opf_setup (line 171) [Avl, lvl, uvl] = makeAvl(baseMVA, gen);

    Error in opf (line 198) om = opf_setup(mpc, mpopt);

    Error in runopf (line 75) [r, success] = opf(casedata, mpopt);

    Best regards,

    Christian

    opened by cbingane 7
  • Add 68-Bus System

    Add 68-Bus System

    Explore the possibility of including a network derived from the 68-Bus, 16-Machine, 5-Area Dynamic Test System.

    Related Links:

    • http://sites.ieee.org/pes-psdp/benchmark-systems-2/
    • https://electricgrids.engr.tamu.edu/electric-grid-test-cases/
    • http://icseg.iti.illinois.edu/new-england-68-bus-test-system/
    • http://sites.ieee.org/pes-resource-center/files/2015/08/PES_TR18_Benchmark-Systems-for-Small-Signal-Stability-Analysis-and-Control.pdf
    • http://www.sel.eesc.usp.br/ieee/NETS68/New_England_New_York_68_Bus_System_study_report.pdf
    opened by ccoffrin 0
Releases(v21.07)
Owner
A Library of IEEE PES Power Grid Benchmarks
A Library of IEEE PES Power Grid Benchmarks
A lightweight library to compare different PyTorch implementations of the same network architecture.

TorchBug is a lightweight library designed to compare two PyTorch implementations of the same network architecture. It allows you to count, and compar

Arjun Krishnakumar 5 Jan 02, 2023
Using machine learning to predict and analyze high and low reader engagement for New York Times articles posted to Facebook.

How The New York Times can increase Engagement on Facebook Using machine learning to understand characteristics of news content that garners "high" Fa

Jessica Miles 0 Sep 16, 2021
An efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits by Inversion-Consistent Transfer Learning"

MMGEN-FaceStylor English | 简体中文 Introduction This repo is an efficient toolkit for Face Stylization based on the paper "AgileGAN: Stylizing Portraits

OpenMMLab 182 Dec 27, 2022
Code for CVPR 2018 paper --- Texture Mapping for 3D Reconstruction with RGB-D Sensor

G2LTex This repository contains the implementation of "Texture Mapping for 3D Reconstruction with RGB-D Sensor (CVPR2018)" based on mvs-texturing. Due

Fu Yanping(付燕平) 129 Dec 30, 2022
ManipulaTHOR, a framework that facilitates visual manipulation of objects using a robotic arm

ManipulaTHOR: A Framework for Visual Object Manipulation Kiana Ehsani, Winson Han, Alvaro Herrasti, Eli VanderBilt, Luca Weihs, Eric Kolve, Aniruddha

AI2 65 Dec 30, 2022
StyleGAN2 - Official TensorFlow Implementation

StyleGAN2 - Official TensorFlow Implementation

NVIDIA Research Projects 10.1k Dec 28, 2022
Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs

Few-shot Relation Extraction via Bayesian Meta-learning on Relation Graphs This is an implemetation of the paper Few-shot Relation Extraction via Baye

MilaGraph 36 Nov 22, 2022
Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences

Neighbor2Seq: Deep Learning on Massive Graphs by Transforming Neighbors to Sequences This repository is an official PyTorch implementation of Neighbor

DIVE Lab, Texas A&M University 8 Jun 12, 2022
Multilingual Image Captioning

Multilingual Image Captioning Authors: Bhavitvya Malik, Gunjan Chhablani Demo Link: https://huggingface.co/spaces/flax-community/multilingual-image-ca

Gunjan Chhablani 32 Nov 25, 2022
GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs

GNNAdvisor: An Efficient Runtime System for GNN Acceleration on GPUs [Paper, Slides, Video Talk] at USENIX OSDI'21 @inproceedings{GNNAdvisor, title=

YUKE WANG 47 Jan 03, 2023
Delta Conformity Sociopatterns Analysis - Delta Conformity Sociopatterns Analysis

Delta_Conformity_Sociopatterns_Analysis ∆-Conformity is a local homophily measur

2 Jan 09, 2022
[TIP 2021] SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction

SADRNet Paper link: SADRNet: Self-Aligned Dual Face Regression Networks for Robust 3D Dense Face Alignment and Reconstruction Requirements python

Multimedia Computing Group, Nanjing University 99 Dec 30, 2022
[ ICCV 2021 Oral ] Our method can estimate camera poses and neural radiance fields jointly when the cameras are initialized at random poses in complex scenarios (outside-in scenes, even with less texture or intense noise )

GNeRF This repository contains official code for the ICCV 2021 paper: GNeRF: GAN-based Neural Radiance Field without Posed Camera. This implementation

Quan Meng 191 Dec 26, 2022
Interpolation-based reduced-order models

Interpolation-reduced-order-models Interpolation-based reduced-order models High-fidelity computational fluid dynamics (CFD) solutions are time consum

Donovan Blais 1 Jan 10, 2022
This is the winning solution of the Endocv-2021 grand challange.

Endocv2021-winner [Paper] This is the winning solution of the Endocv-2021 grand challange. Dependencies pytorch # tested with 1.7 and 1.8 torchvision

Vajira Thambawita 14 Dec 03, 2022
Improving XGBoost survival analysis with embeddings and debiased estimators

xgbse: XGBoost Survival Embeddings "There are two cultures in the use of statistical modeling to reach conclusions from data

Loft 242 Dec 30, 2022
Spatial-Temporal Transformer for Dynamic Scene Graph Generation, ICCV2021

Spatial-Temporal Transformer for Dynamic Scene Graph Generation Pytorch Implementation of our paper Spatial-Temporal Transformer for Dynamic Scene Gra

Yuren Cong 119 Jan 01, 2023
Reproducing code of hair style replacement method from Barbershorp.

Barbershorp Reproducing code of hair style replacement method from Barbershorp. Also reproduces II2S, an improved version of Image2StyleGAN. Requireme

1 Dec 24, 2021
Code release for "BoxeR: Box-Attention for 2D and 3D Transformers"

BoxeR By Duy-Kien Nguyen, Jihong Ju, Olaf Booij, Martin R. Oswald, Cees Snoek. This repository is an official implementation of the paper BoxeR: Box-A

Nguyen Duy Kien 111 Dec 07, 2022