Implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021).

Related tags

Deep LearningConfGF
Overview

ConfGF


License: MIT

[PDF] | [Slides]

The official implementation of Learning Gradient Fields for Molecular Conformation Generation (ICML 2021 Long talk)

Installation

Install via Conda (Recommended)

# Clone the environment
conda env create -f env.yml

# Activate the environment
conda activate confgf

# Install Library
git clone https://github.com/DeepGraphLearning/ConfGF.git
cd ConfGF
python setup.py install

Install Manually

# Create conda environment
conda create -n confgf python=3.7

# Activate the environment
conda activate confgf

# Install packages
conda install -y -c pytorch pytorch=1.7.0 torchvision torchaudio cudatoolkit=10.2
conda install -y -c rdkit rdkit==2020.03.2.0
conda install -y scikit-learn pandas decorator ipython networkx tqdm matplotlib
conda install -y -c conda-forge easydict
pip install pyyaml

# Install PyTorch Geometric
pip install torch-scatter -f https://pytorch-geometric.com/whl/torch-1.7.0+cu102.html
pip install torch-sparse -f https://pytorch-geometric.com/whl/torch-1.7.0+cu102.html
pip install torch-cluster -f https://pytorch-geometric.com/whl/torch-1.7.0+cu102.html
pip install torch-spline-conv -f https://pytorch-geometric.com/whl/torch-1.7.0+cu102.html
pip install torch-geometric==1.6.3

# Install Library
git clone https://github.com/DeepGraphLearning/ConfGF.git
cd ConfGF
python setup.py install

Dataset

Offical Dataset

The offical raw GEOM dataset is avaiable [here].

Preprocessed dataset

We provide the preprocessed datasets (GEOM, ISO17) in a [google drive folder]. For ISO17 dataset, we use the default split of [GraphDG].

Prepare your own GEOM dataset from scratch (optional)

Download the raw GEOM dataset and unpack it.

tar xvf ~/rdkit_folder.tar.gz -C ~/GEOM

Preprocess the raw GEOM dataset.

python script/process_GEOM_dataset.py --base_path GEOM --dataset_name qm9 --confmin 50 --confmax 500
python script/process_GEOM_dataset.py --base_path GEOM --dataset_name drugs --confmin 50 --confmax 100

The final folder structure will look like this:

GEOM
|___rdkit_folder  # raw dataset
|   |___qm9 # raw qm9 dataset
|   |___drugs # raw drugs dataset
|   |___summary_drugs.json
|   |___summary_qm9.json
|   
|___qm9_processed
|   |___train_data_40k.pkl
|   |___val_data_5k.pkl
|   |___test_data_200.pkl
|   
|___drugs_processed
|   |___train_data_39k.pkl
|   |___val_data_5k.pkl
|   |___test_data_200.pkl
|
iso17_processed
|___iso17_split-0_train_processed.pkl
|___iso17_split-0_test_processed.pkl
|
...

Training

All hyper-parameters and training details are provided in config files (./config/*.yml), and free feel to tune these parameters.

You can train the model with the following commands:

python -u script/train.py --config_path ./config/qm9_default.yml
python -u script/train.py --config_path ./config/drugs_default.yml
python -u script/train.py --config_path ./config/iso17_default.yml

The checkpoint of the models will be saved into a directory specified in config files.

Generation

We provide the checkpoints of three trained models, i.e., qm9_default, drugs_default and iso17_default in a [google drive folder].

You can generate conformations of a molecule by feeding its SMILES into the model:

python -u script/gen.py --config_path ./config/qm9_default.yml --generator ConfGF --smiles c1ccccc1
python -u script/gen.py --config_path ./config/qm9_default.yml --generator ConfGFDist --smiles c1ccccc1

Here we use the models trained on GEOM-QM9 to generate conformations for the benzene. The argument --generator indicates the type of the generator, i.e., ConfGF vs. ConfGFDist. See the ablation study (Table 5) in the original paper for more details.

You can also generate conformations for an entire test set.

python -u script/gen.py --config_path ./config/qm9_default.yml --generator ConfGF \
                        --start 0 --end 200 \

python -u script/gen.py --config_path ./config/qm9_default.yml --generator ConfGFDist \
                        --start 0 --end 200 \

python -u script/gen.py --config_path ./config/drugs_default.yml --generator ConfGF \
                        --start 0 --end 200 \

python -u script/gen.py --config_path ./config/drugs_default.yml --generator ConfGFDist \
                        --start 0 --end 200 \

Here start and end indicate the range of the test set that we want to use. All hyper-parameters related to generation can be set in config files.

Conformations of some drug-like molecules generated by ConfGF are provided below.

Get Results

The results of all benchmark tasks can be calculated based on generated conformations.

We report the results of each task in the following tables. Results of ConfGF and ConfGFDist are re-evaluated based on the current code base, which successfully reproduce the results reported in the original paper. Results of other models are taken directly from the original paper.

Task 1. Conformation Generation

The COV and MAT scores on the GEOM datasets can be calculated using the following commands:

python -u script/get_task1_results.py --input dir_of_QM9_samples --core 10 --threshold 0.5  

python -u script/get_task1_results.py --input dir_of_Drugs_samples --core 10 --threshold 1.25  

Table: COV and MAT scores on GEOM-QM9

QM9 COV-Mean (%) COV-Median (%) MAT-Mean (\AA) MAT-Median (\AA)
ConfGF 91.06 95.76 0.2649 0.2668
ConfGFDist 85.37 88.59 0.3435 0.3548
CGCF 78.05 82.48 0.4219 0.3900
GraphDG 73.33 84.21 0.4245 0.3973
CVGAE 0.09 0.00 1.6713 1.6088
RDKit 83.26 90.78 0.3447 0.2935

Table: COV and MAT scores on GEOM-Drugs

Drugs COV-Mean (%) COV-Median (%) MAT-Mean (\AA) MAT-Median (\AA)
ConfGF 62.54 71.32 1.1637 1.1617
ConfGFDist 49.96 48.12 1.2845 1.2827
CGCF 53.96 57.06 1.2487 1.2247
GraphDG 8.27 0.00 1.9722 1.9845
CVGAE 0.00 0.00 3.0702 2.9937
RDKit 60.91 65.70 1.2026 1.1252

Task 2. Distributions Over Distances

The MMD metrics on the ISO17 dataset can be calculated using the following commands:

python -u script/get_task2_results.py --input dir_of_ISO17_samples

Table: Distributions over distances

Method Single-Mean Single-Median Pair-Mean Pair-Median All-Mean All-Median
ConfGF 0.3430 0.2473 0.4195 0.3081 0.5432 0.3868
ConfGFDist 0.3348 0.2011 0.4080 0.2658 0.5821 0.3974
CGCF 0.4490 0.1786 0.5509 0.2734 0.8703 0.4447
GraphDG 0.7645 0.2346 0.8920 0.3287 1.1949 0.5485
CVGAE 4.1789 4.1762 4.9184 5.1856 5.9747 5.9928
RDKit 3.4513 3.1602 3.8452 3.6287 4.0866 3.7519

Visualizing molecules with PyMol

Start Setup

  1. pymol -R
  2. Display - Background - White
  3. Display - Color Space - CMYK
  4. Display - Quality - Maximal Quality
  5. Display Grid
    1. by object: use set grid_slot, int, mol_name to put the molecule into the corresponding slot
    2. by state: align all conformations in a single slot
    3. by object-state: align all conformations and put them in separate slots. (grid_slot dont work!)
  6. Setting - Line and Sticks - Ball and Stick on - Ball and Stick ratio: 1.5
  7. Setting - Line and Sticks - Stick radius: 0.2 - Stick Hydrogen Scale: 1.0

Show Molecule

  1. To show molecules

    1. hide everything
    2. show sticks
  2. To align molecules: align name1, name2

  3. Convert RDKit mol to Pymol

    from rdkit.Chem import PyMol
    v= PyMol.MolViewer()
    rdmol = Chem.MolFromSmiles('C')
    v.ShowMol(rdmol, name='mol')
    v.SaveFile('mol.pkl')

Make the trajectory for Langevin dynamics

  1. load a sequence of pymol objects named traj*.pkl into the PyMol, where traji.pkl is the i-th conformation in the trajectory.
  2. Join states: join_states mol, traj*, 0
  3. Delete useless object: delete traj*
  4. Movie - Program - State Loop - Full Speed
  5. Export the movie to a sequence of PNG files: File - Export Movie As - PNG Images
  6. Use photoshop to convert the PNG sequence to a GIF with the transparent background.

Citation

Please consider citing the following paper if you find our codes helpful. Thank you!

@inproceedings{shi*2021confgf,
title={Learning Gradient Fields for Molecular Conformation Generation},
author={Shi, Chence and Luo, Shitong and Xu, Minkai and Tang, Jian},
booktitle={International Conference on Machine Learning},
year={2021}
}

Contact

Chence Shi ([email protected])

Owner
MilaGraph
Research group led by Prof. Jian Tang at Mila-Quebec AI Institute (https://mila.quebec/) focusing on graph representation learning and graph neural networks.
MilaGraph
Build tensorflow keras model pipelines in a single line of code. Created by Ram Seshadri. Collaborators welcome. Permission granted upon request.

deep_autoviml Build keras pipelines and models in a single line of code! Table of Contents Motivation How it works Technology Install Usage API Image

AutoViz and Auto_ViML 102 Dec 17, 2022
an implementation of softmax splatting for differentiable forward warping using PyTorch

softmax-splatting This is a reference implementation of the softmax splatting operator, which has been proposed in Softmax Splatting for Video Frame I

Simon Niklaus 338 Dec 28, 2022
IGCN : Image-to-graph convolutional network

IGCN : Image-to-graph convolutional network IGCN is a learning framework for 2D/3D deformable model registration and alignment, and shape reconstructi

Megumi Nakao 7 Oct 27, 2022
Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

Python Rapid Artificial Intelligence Ab Initio Molecular Dynamics

14 Nov 06, 2022
Source code for deep symbolic optimization.

Update July 10, 2021: This repository now supports an additional symbolic optimization task: learning symbolic policies for reinforcement learning. Th

Brenden Petersen 290 Dec 25, 2022
Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021

Region-aware Contrastive Learning for Semantic Segmentation, ICCV 2021 Abstract Recent works have made great success in semantic segmentation by explo

Hanzhe Hu 30 Dec 29, 2022
Mmrotate - OpenMMLab Rotated Object Detection Benchmark

OpenMMLab website HOT OpenMMLab platform TRY IT OUT 📘 Documentation | 🛠️ Insta

OpenMMLab 1.2k Jan 04, 2023
A PyTorch implementation of PointRend: Image Segmentation as Rendering

PointRend A PyTorch implementation of PointRend: Image Segmentation as Rendering [arxiv] [Official Implementation: Detectron2] This repo for Only Sema

AhnDW 336 Dec 26, 2022
Creating multimodal multitask models

Fusion Brain Challenge The English version of the document can be found here. Обновления 01.11 Мы выкладываем пример данных, аналогичных private test

Sber AI 43 Nov 28, 2022
Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21)

NeuralGIF Code for Neural-GIF: Neural Generalized Implicit Functions for Animating People in Clothing(ICCV21) We present Neural Generalized Implicit F

Garvita Tiwari 104 Nov 18, 2022
A simple algorithm for extracting tree height in sparse scene from point cloud data.

TREE HEIGHT EXTRACTION IN SPARSE SCENES BASED ON UAV REMOTE SENSING This is the offical python implementation of the paper "Tree Height Extraction in

6 Oct 28, 2022
Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neurons learned with Gradient descent or LeLevenberg–Marquardt algorithm

Neuron class provides LNU (Linear Neural Unit), QNU (Quadratic Neural Unit), RBF (Radial Basis Function), MLP (Multi Layer Perceptron), MLP-ELM (Multi Layer Perceptron - Extreme Learning Machine) neu

Filip Molcik 38 Dec 17, 2022
HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands

HALO: A Skeleton-Driven Neural Occupancy Representation for Articulated Hands Oral Presentation, 3DV 2021 Korrawe Karunratanakul, Adrian Spurr, Zicong

Korrawe Karunratanakul 43 Oct 07, 2022
Official PyTorch implementation of DD3D: Is Pseudo-Lidar needed for Monocular 3D Object detection? (ICCV 2021), Dennis Park*, Rares Ambrus*, Vitor Guizilini, Jie Li, and Adrien Gaidon.

DD3D: "Is Pseudo-Lidar needed for Monocular 3D Object detection?" Install // Datasets // Experiments // Models // License // Reference Full video Offi

Toyota Research Institute - Machine Learning 364 Dec 27, 2022
Matching python environment code for Lux AI 2021 Kaggle competition, and a gym interface for RL models.

Lux AI 2021 python game engine and gym This is a replica of the Lux AI 2021 game ported directly over to python. It also sets up a classic Reinforceme

Geoff McDonald 74 Nov 03, 2022
A hifiasm fork for metagenome assembly using Hifi reads.

hifiasm_meta - de novo metagenome assembler, based on hifiasm, a haplotype-resolved de novo assembler for PacBio Hifi reads.

44 Jul 10, 2022
Fast, Attemptable Route Planner for Navigation in Known and Unknown Environments

FAR Planner uses a dynamically updated visibility graph for fast replanning. The planner models the environment with polygons and builds a global visi

Fan Yang 346 Dec 30, 2022
This is a project based on retinaface face detection, including ghostnet and mobilenetv3

English | 简体中文 RetinaFace in PyTorch Chinese detailed blog:https://zhuanlan.zhihu.com/p/379730820 Face recognition with masks is still robust---------

pogg 59 Dec 21, 2022
A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano

yolov5-fire-smoke-detect-python A python implementation of Yolov5 to detect fire or smoke in the wild in Jetson Xavier nx and Jetson nano You can see

20 Dec 15, 2022
CS50x-AI - Artificial Intelligence with Python from Harvard University

CS50x-AI Artificial Intelligence with Python from Harvard University 📖 Table of

Hosein Damavandi 6 Aug 22, 2022