This is a project based on retinaface face detection, including ghostnet and mobilenetv3

Overview

English | 简体中文

RetinaFace in PyTorch

Chinese detailed blog:https://zhuanlan.zhihu.com/p/379730820

stream

Face recognition with masks is still robust-----------------------------------

stream

Version Run Library Test of pytorch_retinaface

How well retinaface works can only be verified by comparison experiments. Here we test the pytorch_retinaface version, which is the one with the highest star among all versions in the community.

Data set preparation

This address contains the clean Wideface dataset:https://github.com/Linzaer/Ultra-Light-Fast-Generic-Face-Detector-1MB

在这里插入图片描述

The downloaded dataset contains a total of these three.

在这里插入图片描述

At this point the folder is image only, however the author requires the data in the format of:

在这里插入图片描述

So we are still missing the index file for the data, and this is the time to use the script provided by the authorwider_val.py. Export the image information to a txt file, the full format of the export is as follows.

在这里插入图片描述

Each dataset has a txt file containing the sample information. The content of the txt file is roughly like this (take train.txt as an example), containing image information and face location information.

# 0--Parade/0_Parade_marchingband_1_849.jpg
449 330 122 149 488.906 373.643 0.0 542.089 376.442 0.0 515.031 412.83 0.0 485.174 425.893 0.0 538.357 431.491 0.0 0.82
# 0--Parade/0_Parade_Parade_0_904.jpg
361 98 263 339 424.143 251.656 0.0 547.134 232.571 0.0 494.121 325.875 0.0 453.83 368.286 0.0 561.978 342.839 0.0 0.89

Model Training

python train.py --network mobile0.25 

If necessary, please download the pre-trained model first and put it in the weights folder. If you want to start training from scratch, specify 'pretrain': False, in the data/config.py file.

Model Evaluation

cd ./widerface_evaluate
python setup.py build_ext --inplace
python test_widerface.py --trained_model ./weights/mobilenet0.25_Final.pth --network mobile0.25
python widerface_evaluate/evaluation.py

GhostNet and MobileNetv3 migration backbone

3.1 pytorch_retinaface source code modification

After the test in the previous section, and took a picture containing only one face for detection, it can be found that resnet50 for the detection of a single picture and the picture contains only a single face takes longer, if the project focuses on real-time then mb0.25 is a better choice, but for the face dense and small-scale scenario is more strenuous. If the skeleton is replaced by another backbone, is it possible to balance real-time and accuracy? The backbone replacement here temporarily uses ghostnet and mobilev3 network (mainly also want to test whether the effect of these two networks can be as outstanding as the paper).

We specify the relevant reference in the parent class of the retinaface.py file,and specify the network layer ID to be called in IntermediateLayerGetter(backbone, cfg['return_layers']), which is specified in the config.py file as follows.

def __init__(self, cfg=None, phase='train'):
    """
    :param cfg:  Network related settings.
    :param phase: train or test.
    """
    super(RetinaFace, self).__init__()
    self.phase = phase
    backbone = None
    if cfg['name'] == 'mobilenet0.25':
        backbone = MobileNetV1()
        if cfg['pretrain']:
            checkpoint = torch.load("./weights/mobilenetV1X0.25_pretrain.tar", map_location=torch.device('cpu'))
            from collections import OrderedDict
            new_state_dict = OrderedDict()
            for k, v in checkpoint['state_dict'].items():
                name = k[7:]  # remove module.
                new_state_dict[name] = v
            # load params
            backbone.load_state_dict(new_state_dict)
    elif cfg['name'] == 'Resnet50':
        import torchvision.models as models
        backbone = models.resnet50(pretrained=cfg['pretrain'])
    elif cfg['name'] == 'ghostnet':
        backbone = ghostnet()
    elif cfg['name'] == 'mobilev3':
        backbone = MobileNetV3()

    self.body = _utils.IntermediateLayerGetter(backbone, cfg['return_layers'])

We specify the number of network channels of the FPN and fix the in_channels of each layer for the three-layer FPN structure formulated in the model.

in_channels_stage2 = cfg['in_channel']
        in_channels_list = [
            in_channels_stage2 * 2,
            in_channels_stage2 * 4,
            in_channels_stage2 * 8,
        ]
        out_channels = cfg['out_channel']
        # self.FPN = FPN(in_channels_list, out_channels)
        self.FPN = FPN(in_channels_list, out_channels)

We insert the ghontnet network in models/ghostnet.py, and the network structure comes from the Noah's Ark Labs open source addresshttps://github.com/huawei-noah/ghostnet

Lightweight network classification effect comparison:

stream

Because of the inclusion of the residual convolution separation module and the SE module, the source code is relatively long, and the source code of the modified network is as followsmodels/ghostnet.py

We insert the MobileNetv3 network in models/mobilev3.py. The network structure comes from the pytorch version reproduced by github users, so it's really plug-and-playhttps://github.com/kuan-wang/pytorch-mobilenet-v3

The modified source code is as follows.models/mobilenetv3.py

3.2 Model Training

Execute the command: python train.py --network ghostnet to start training

stream

Counting the duration of training a single epoch per network.

  • resnet50>>mobilenetv3>ghostnet-m>ghostnet-s>mobilenet0.25

3.3 Model Testing and Evaluation

Test GhostNet(se-ratio=0.25):

As you can see, a batch test is about 56ms

Evaluation GhostNet(se-ratio=0.25): 在这里插入图片描述

It can be seen that ghostnet is relatively poor at recognizing small sample data and face occlusion.

Test MobileNetV3(se-ratio=1):

在这里插入图片描述

可以看出,一份batch的测试大概在120ms左右

Evaluation MobileNetV3(se-ratio=1): 在这里插入图片描述

The evaluation here outperforms ghostnet on all three subsets (the comparison here is actually a bit unscientific, because the full se_ratio of mbv3 is used to benchmark ghostnet's se_ratio by 1/4, but the full se_ratio of ghostnet will cause the model memory to skyrocket (at se-ratio=0) weights=6M, se-ratio=0.25 when weights=12M, se-ratio=1 when weights=30M, and the accuracy barely exceeds that of MobileNetV3 with se-ratio=1, I personally feel that the cost performance is too low)

Translated with www.DeepL.com/Translator (free version)

3.4 Model Demo

  • Use webcam:

    python detect.py -fourcc 0

  • Detect Face:

    python detect.py --image img_path

  • Detect Face and save:

    python detect.py --image img_path --sava_image True

3.2 comparision of resnet & mbv3 & gnet & mb0.25

Reasoning Performance Comparison:

Backbone Computing backend size(MB) Framework input_size Run time
resnet50 Core i5-4210M 106 torch 640 1571 ms
$GhostNet-m^{Se=0.25}$ Core i5-4210M 12 torch 640 403 ms
MobileNet v3 Core i5-4210M 8 torch 640 576 ms
MobileNet0.25 Core i5-4210M 1.7 torch 640 187 ms
MobileNet0.25 Core i5-4210M 1.7 onnxruntime 640 73 ms

Testing performance comparison:

Backbone Easy Medium Hard
resnet50 95.48% 94.04% 84.43%
$MobileNet v3^{Se=1}$ 93.48% 91.23% 80.19%
$GhostNet-m^{Se=0.25}$ 93.35% 90.84% 76.11%
MobileNet0.25 90.70% 88.16% 73.82%

Comparison of the effect of single chart test:

stream

Chinese detailed blog:https://zhuanlan.zhihu.com/p/379730820

References

Owner
pogg
Hello, I'm pogg. I will record some interesting experiment here.
pogg
A NSFW content filter.

Project_Nfilter A NSFW content filter. With a motive of minimizing the spreads and leakage of NSFW contents on internet and access to others devices ,

1 Jan 20, 2022
Sample and Computation Redistribution for Efficient Face Detection

Introduction SCRFD is an efficient high accuracy face detection approach which initially described in Arxiv. Performance Precision, flops and infer ti

Sajjad Aemmi 13 Mar 05, 2022
A 2D Visual Localization Framework based on Essential Matrices [ICRA2020]

A 2D Visual Localization Framework based on Essential Matrices This repository provides implementation of our paper accepted at ICRA: To Learn or Not

Qunjie Zhou 27 Nov 07, 2022
Implementation of Artificial Neural Network Algorithm

Artificial Neural Network This repository contain implementation of Artificial Neural Network Algorithm in several programming languanges and framewor

Resha Dwika Hefni Al-Fahsi 1 Sep 14, 2022
AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition

AdaMML: Adaptive Multi-Modal Learning for Efficient Video Recognition [ArXiv] [Project Page] This repository is the official implementation of AdaMML:

International Business Machines 43 Dec 26, 2022
Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR, 2019)

Multi-task Self-supervised Object Detection via Recycling of Bounding Box Annotations (CVPR 2019) To make better use of given limited labels, we propo

126 Sep 13, 2022
Implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Environments.

ALPHAMEPOL This repository contains the implementation of the ALPHAMEPOL algorithm, presented in Unsupervised Reinforcement Learning in Multiple Envir

3 Dec 23, 2021
Official Implementation for the paper DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification

DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification Official Implementation for the pape

Anh M. Nguyen 36 Dec 28, 2022
Deep Learning and Reinforcement Learning Library for Scientists and Engineers 🔥

TensorLayer is a novel TensorFlow-based deep learning and reinforcement learning library designed for researchers and engineers. It provides an extens

TensorLayer Community 7.1k Dec 27, 2022
"Exploring Vision Transformers for Fine-grained Classification" at CVPRW FGVC8

FGVC8 Exploring Vision Transformers for Fine-grained Classification paper presented at the CVPR 2021, The Eight Workshop on Fine-Grained Visual Catego

Marcos V. Conde 19 Dec 06, 2022
Script for getting information in discord

User-info.py Script for getting information in https://discord.com/ Instalação: apt-get update -y apt-get upgrade -y apt-get install git pkg install

Moleey 1 Dec 18, 2021
Use .csv files to record, play and evaluate motion capture data.

Purpose These scripts allow you to record mocap data to, and play from .csv files. This approach facilitates parsing of body movement data in statisti

21 Dec 12, 2022
Awesome Transformers in Medical Imaging

This repo supplements our Survey on Transformers in Medical Imaging Fahad Shamshad, Salman Khan, Syed Waqas Zamir, Muhammad Haris Khan, Munawar Hayat,

Fahad Shamshad 666 Jan 06, 2023
An official implementation of the Anchor DETR.

Anchor DETR: Query Design for Transformer-Based Detector Introduction This repository is an official implementation of the Anchor DETR. We encode the

MEGVII Research 276 Dec 28, 2022
Custom IMDB Dataset is extracted between 2020-2021 and custom distilBERT model is trained for movie success probability prediction

IMDB Success Predictor Project involves Web Scraping custom IMDB data between 2020 and 2021 of 10000 movies and shows sorted by number of votes ,fine

Gautam Diwan 1 Jan 18, 2022
An official reimplementation of the method described in the INTERSPEECH 2021 paper - Speech Resynthesis from Discrete Disentangled Self-Supervised Representations.

Speech Resynthesis from Discrete Disentangled Self-Supervised Representations Implementation of the method described in the Speech Resynthesis from Di

Facebook Research 253 Jan 06, 2023
CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework

CAPRI: Context-Aware Interpretable Point-of-Interest Recommendation Framework This repository contains a framework for Recommender Systems (RecSys), a

RecSys Lab 8 Jul 03, 2022
MagFace: A Universal Representation for Face Recognition and Quality Assessment

MagFace MagFace: A Universal Representation for Face Recognition and Quality Assessment in IEEE Conference on Computer Vision and Pattern Recognition

Qiang Meng 523 Jan 05, 2023
App for identification of various objects. Based on YOLO v4 tiny architecture

Object_detection Repository containing trained model yolo v4 tiny, which is capable of identification 80 different classes Default feed is set to be a

Mateusz Kurdziel 0 Jun 22, 2022
YOLOPのPythonでのONNX推論サンプル

YOLOP-ONNX-Video-Inference-Sample YOLOPのPythonでのONNX推論サンプルです。 ONNXモデルは、hustvl/YOLOP/weights を使用しています。 Requirement OpenCV 3.4.2 or later onnxruntime 1.

KazuhitoTakahashi 8 Sep 05, 2022