ICNet and PSPNet-50 in Tensorflow for real-time semantic segmentation

Overview

Real-Time Semantic Segmentation in TensorFlow

Perform pixel-wise semantic segmentation on high-resolution images in real-time with Image Cascade Network (ICNet), the highly optimized version of the state-of-the-art Pyramid Scene Parsing Network (PSPNet). This project implements ICNet and PSPNet50 in Tensorflow with training support for Cityscapes.

Download pre-trained ICNet and PSPNet50 models here

Deploy ICNet and preform inference at over 30fps on NVIDIA Titan Xp.

This implementation is based off of the original ICNet paper proposed by Hengshuang Zhao titled ICNet for Real-Time Semantic Segmentation on High-Resolution Images. Some ideas were also taken from their previous PSPNet paper, Pyramid Scene Parsing Network. The network compression implemented is based on the paper Pruning Filters for Efficient ConvNets.

Release information

October 14, 2018

An ICNet model trained in August, 2018 has been released as a pre-trained model in the Model Zoo. All the models were trained without coarse labels and are evaluated on the validation set.

September 22, 2018

The baseline PSPNet50 pre-trained model files have been released publically in the Model Zoo. The accuracy of the model surpases that referenced in the ICNet paper.

August 12, 2018

Initial release. Project includes scripts for training ICNet, evaluating ICNet and compressing ICNet from ResNet50 weights. Also includes scripts for training PSPNet and evaluating PSPNet as a baseline.

Documentation

Model Depot Inference Tutorials

Overview

ICNet model in Tensorboard.

Training ICNet from Classification Weights

This project has implemented the ICNet training process, allowing you to train your own model directly from ResNet50 weights as is done in the original work. Other available implementations simply convert the Caffe model to Tensorflow, only allowing for fine-tuning from weights trained on Cityscapes.

By training ICNet on weights initialized from ImageNet, you have more flexibility in the transfer learning process. Read more about setting up this process can be found here. For training ICNet, follow the guide here.

ICNet Network Compression

In order to achieve real-time speeds, ICNet uses a form of network compression called filter pruning. This drastically reduces the complexity of the model by removing filters from convolutional layers in the network. This project has also implemented this ICNet compression process directly in Tensorflow.

The compression is working, however which "compression scheme" to use is still somewhat ambiguous when reading the original ICNet paper. This is still a work in progress.

PSPNet Baseline Implementation

In order to also reproduce the baselines used in the original ICNet paper, you will also find implementations and pre-trained models for PSPNet50. Since ICNet can be thought of as a modified PSPNet, it can be useful for comparison purposes.

Informtion on training or using the baseline PSPNet50 model can be found here.

Maintainers

If you found the project, documentation and the provided pretrained models useful in your work, consider citing it with

@misc{fastsemseg2018,
  author={Andrienko, Oles},
  title={Fast Semantic Segmentation},
  howpublished={\url{https://github.com/oandrienko/fast-semantic-segmentation}},
  year={2018}
}

Related Work

This project and some of the documentation was based on the Tensorflow Object Detection API. It was the initial inspiration for this project. The third_party directory of this project contains files from OpenAI's Gradient Checkpointing project by Tim Salimans and Yaroslav Bulatov. The helper modules found in third_party/model_deploy.py are from the Tensorflow Slim project. Finally, another open source ICNet implementation which converts the original Caffe network weights to Tensorflow was used as a reference. Find all these projects below:

Thanks

  • This project could not have happened without the advice (and GPU access) given by Professor Steven Waslander and Ali Harakeh from the Waterloo Autonomous Vehicles Lab (now the Toronto Robotics and Artificial Intelligence Lab).
Owner
Oles Andrienko
Oles Andrienko
Airbus Ship Detection Challenge

Airbus Ship Detection Challenge This is an open solution to the Airbus Ship Detection Challenge. Our goals We are building entirely open solution to t

minerva.ml 55 Nov 29, 2022
This repository is for Competition for ML_data class

This repository is for Competition for ML_data class. Based on mmsegmentatoin,mainly using swin transformer to completed the competition.

jianlong 2 Oct 23, 2022
Code for CVPR2019 paper《Unequal Training for Deep Face Recognition with Long Tailed Noisy Data》

Unequal-Training-for-Deep-Face-Recognition-with-Long-Tailed-Noisy-Data. This is the code of CVPR 2019 paper《Unequal Training for Deep Face Recognition

Zhong Yaoyao 68 Jan 07, 2023
PyDeepFakeDet is an integrated and scalable tool for Deepfake detection.

PyDeepFakeDet An integrated and scalable library for Deepfake detection research. Introduction PyDeepFakeDet is an integrated and scalable Deepfake de

Junke, Wang 49 Dec 11, 2022
Implementation of the final project of the course DDA6309 Probabilistic Graphical Model

Task-aware Joint CWS and POS (TCwsPos) This is the implementation of the final project of the course DDA6309 Probabilistic Graphical Models, The Chine

Peng 1 Dec 26, 2021
ViDT: An Efficient and Effective Fully Transformer-based Object Detector

ViDT: An Efficient and Effective Fully Transformer-based Object Detector by Hwanjun Song1, Deqing Sun2, Sanghyuk Chun1, Varun Jampani2, Dongyoon Han1,

NAVER AI 262 Dec 27, 2022
Manipulation OpenAI Gym environments to simulate robots at the STARS lab

Manipulator Learning This repository contains a set of manipulation environments that are compatible with OpenAI Gym and simulated in pybullet. In par

STARS Laboratory 5 Dec 08, 2022
Have you ever wondered how cool it would be to have your own A.I

Have you ever wondered how cool it would be to have your own A.I. assistant Imagine how easier it would be to send emails without typing a single word, doing Wikipedia searches without opening web br

Harsh Gupta 1 Nov 09, 2021
Official Implementation for the paper DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification

DeepFace-EMD: Re-ranking Using Patch-wise Earth Mover’s Distance Improves Out-Of-Distribution Face Identification Official Implementation for the pape

Anh M. Nguyen 36 Dec 28, 2022
Landmarks Recogntion Web application using Streamlit.

Landmark Recognition Web-App using Streamlit Watch Tutorial for this project Source Trained model landmarks_classifier_asia_V1/1 is taken from the Ten

Kushal Bhavsar 5 Dec 12, 2022
EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures

SCICAP: Scientific Figures Dataset This is the Github repo of the EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures (Hsu

Edward 26 Nov 21, 2022
MMDetection3D is an open source object detection toolbox based on PyTorch

MMDetection3D is an open source object detection toolbox based on PyTorch, towards the next-generation platform for general 3D detection. It is a part of the OpenMMLab project developed by MMLab.

OpenMMLab 3.2k Jan 05, 2023
PyTorch implementation of Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction (ICCV 2021).

Towards Accurate Alignment in Real-time 3D Hand-Mesh Reconstruction Introduction This is official PyTorch implementation of Towards Accurate Alignment

TANG Xiao 96 Dec 27, 2022
Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks

Self-supervised Point Cloud Prediction Using 3D Spatio-temporal Convolutional Networks This is a Pytorch-Lightning implementation of the paper "Self-s

Photogrammetry & Robotics Bonn 111 Dec 06, 2022
Veri Setinizi Yolov5 Formatına Dönüştürün

Veri Setinizi Yolov5 Formatına Dönüştürün! Bu Repo da Neler Var? Xml Formatındaki Veri Setini .Txt Formatına Çevirme Xml Formatındaki Dosyaları Silme

Kadir Nar 4 Aug 22, 2022
Pytorch implementation of XRD spectral identification from COD database

XRDidentifier Pytorch implementation of XRD spectral identification from COD database. Details will be explained in the paper to be submitted to NeurI

Masaki Adachi 4 Jan 07, 2023
Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning

Understanding the Effects of Datasets Characteristics on Offline Reinforcement Learning Kajetan Schweighofer1, Markus Hofmarcher1, Marius-Constantin D

Institute for Machine Learning, Johannes Kepler University Linz 17 Dec 28, 2022
Individual Treatment Effect Estimation

CAPE Individual Treatment Effect Estimation Run CAPE python train_causal.py --loop 10 -m cape_cau -d NI --i_t 1 Run a baseline model python train_cau

S. Deng 4 Sep 02, 2022
Code and models for "Pano3D: A Holistic Benchmark and a Solid Baseline for 360 Depth Estimation", OmniCV Workshop @ CVPR21.

Pano3D A Holistic Benchmark and a Solid Baseline for 360o Depth Estimation Pano3D is a new benchmark for depth estimation from spherical panoramas. We

Visual Computing Lab, Information Technologies Institute, Centre for Reseach and Technology Hellas 50 Dec 29, 2022
TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 06, 2023