MemStream: Memory-Based Anomaly Detection in Multi-Aspect Streams with Concept Drift

Overview

MemStream

Implementation of

MemStream detects anomalies from a multi-aspect data stream. We output an anomaly score for each record. MemStream is a memory augmented feature extractor, allows for quick retraining, gives a theoretical bound on the memory size for effective drift handling, is robust to memory poisoning, and outperforms 11 state-of-the-art streaming anomaly detection baselines.

After an initial training of the feature extractor on a small subset of normal data, MemStream processes records in two steps: (i) It outputs anomaly scores for each record by querying the memory for K-nearest neighbours to the record encoding and calculating a discounted distance and (ii) It updates the memory, in a FIFO manner, if the anomaly score is within an update threshold β.

Demo

  1. KDDCUP99: Run python3 memstream.py --dataset KDD --beta 1 --memlen 256
  2. NSL-KDD: Run python3 memstream.py --dataset NSL --beta 0.1 --memlen 2048
  3. UNSW-NB 15: Run python3 memstream.py --dataset UNSW --beta 0.1 --memlen 2048
  4. CICIDS-DoS: Run python3 memstream.py --dataset DOS --beta 0.1 --memlen 2048
  5. SYN: Run python3 memstream-syn.py --dataset SYN --beta 1 --memlen 16
  6. Ionosphere: Run python3 memstream.py --dataset ionosphere --beta 0.001 --memlen 4
  7. Cardiotocography: Run python3 memstream.py --dataset cardio --beta 1 --memlen 64
  8. Statlog Landsat Satellite: Run python3 memstream.py --dataset statlog --beta 0.01 --memlen 32
  9. Satimage-2: Run python3 memstream.py --dataset satimage-2 --beta 10 --memlen 256
  10. Mammography: Run python3 memstream.py --dataset mammography --beta 0.1 --memlen 128
  11. Pima Indians Diabetes: Run python3 memstream.py --dataset pima --beta 0.001 --memlen 64
  12. Covertype: Run python3 memstream.py --dataset cover --beta 0.0001 --memlen 2048

Command line options

  • --dataset: The dataset to be used for training. Choices 'NSL', 'KDD', 'UNSW', 'DOS'. (default 'NSL')
  • --beta: The threshold beta to be used. (default: 0.1)
  • --memlen: The size of the Memory Module (default: 2048)
  • --dev: Pytorch device to be used for training like "cpu", "cuda:0" etc. (default: 'cuda:0')
  • --lr: Learning rate (default: 0.01)
  • --epochs: Number of epochs (default: 5000)

Input file format

MemStream expects the input multi-aspect record stream to be stored in a contains , separated file.

Datasets

Processed Datasets can be downloaded from here. Please unzip and place the files in the data folder of the repository.

  1. KDDCUP99
  2. NSL-KDD
  3. UNSW-NB 15
  4. CICIDS-DoS
  5. Synthetic Dataset (Introduced in paper)
  6. Ionosphere
  7. Cardiotocography
  8. Statlog Landsat Satellite
  9. Satimage-2
  10. Mammography
  11. Pima Indians Diabetes
  12. Covertype

Environment

This code has been tested on Debian GNU/Linux 9 with a 12GB Nvidia GeForce RTX 2080 Ti GPU, CUDA Version 10.2 and PyTorch 1.5.

Owner
Stream-AD
Streaming Anomaly Detection
Stream-AD
Code for "LoFTR: Detector-Free Local Feature Matching with Transformers", CVPR 2021

LoFTR: Detector-Free Local Feature Matching with Transformers Project Page | Paper LoFTR: Detector-Free Local Feature Matching with Transformers Jiami

ZJU3DV 1.4k Jan 04, 2023
A clear, concise, simple yet powerful and efficient API for deep learning.

The Gluon API Specification The Gluon API specification is an effort to improve speed, flexibility, and accessibility of deep learning technology for

Gluon API 2.3k Dec 17, 2022
GazeScroller - Using Facial Movements to perform Hands-free Gesture on the system

GazeScroller Using Facial Movements to perform Hands-free Gesture on the system

2 Jan 05, 2022
EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures

SCICAP: Scientific Figures Dataset This is the Github repo of the EMNLP 2021 Findings' paper, SCICAP: Generating Captions for Scientific Figures (Hsu

Edward 26 Nov 21, 2022
[IJCAI'21] Deep Automatic Natural Image Matting

Deep Automatic Natural Image Matting [IJCAI-21] This is the official repository of the paper Deep Automatic Natural Image Matting. Introduction | Netw

Jizhizi_Li 316 Jan 06, 2023
Multi-Horizon-Forecasting-for-Limit-Order-Books

Multi-Horizon-Forecasting-for-Limit-Order-Books This jupyter notebook is used to demonstrate our work, Multi-Horizon Forecasting for Limit Order Books

Zihao Zhang 116 Dec 23, 2022
Awesome AI Learning with +100 AI Cheat-Sheets, Free online Books, Top Courses, Best Videos and Lectures, Papers, Tutorials, +99 Researchers, Premium Websites, +121 Datasets, Conferences, Frameworks, Tools

All about AI with Cheat-Sheets(+100 Cheat-sheets), Free Online Books, Courses, Videos and Lectures, Papers, Tutorials, Researchers, Websites, Datasets

Niraj Lunavat 1.2k Jan 01, 2023
Woosung Choi 63 Nov 14, 2022
Introduction to AI assignment 1 HCM University of Technology, term 211

Sokoban Bot Introduction to AI assignment 1 HCM University of Technology, term 211 Abstract This is basically a solver for Sokoban game using Breadth-

Quang Minh 4 Dec 12, 2022
Efficient Deep Learning Systems course

Efficient Deep Learning Systems This repository contains materials for the Efficient Deep Learning Systems course taught at the Faculty of Computer Sc

Max Ryabinin 173 Dec 29, 2022
pix2pix in tensorflow.js

pix2pix in tensorflow.js This repo is moved to https://github.com/yining1023/pix2pix_tensorflowjs_lite See a live demo here: https://yining1023.github

Yining Shi 47 Oct 04, 2022
Collection of TensorFlow2 implementations of Generative Adversarial Network varieties presented in research papers.

TensorFlow2-GAN Collection of tf2.0 implementations of Generative Adversarial Network varieties presented in research papers. Model architectures will

41 Apr 28, 2022
This repository contains demos I made with the Transformers library by HuggingFace.

Transformers-Tutorials Hi there! This repository contains demos I made with the Transformers library by 🤗 HuggingFace. Currently, all of them are imp

3.5k Jan 01, 2023
Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021)

Bridging the Gap between Label- and Reference based Synthesis(ICCV 2021) Tensorflow implementation of Bridging the Gap between Label- and Reference-ba

huangqiusheng 8 Jul 13, 2022
Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis

Practical Blind Denoising via Swin-Conv-UNet and Data Synthesis [Paper] [Online Demo] The following results are obtained by our SCUNet with purely syn

Kai Zhang 312 Jan 07, 2023
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution This code belongs to the paper [1] available at https://arx

Fabian Altekrueger 5 Jun 02, 2022
A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

A criticism of a recent paper on buggy image downsampling methods in popular image processing and deep learning libraries.

70 Jul 12, 2022
Experiment about Deep Person Re-identification with EfficientNet-v2

We evaluated the baseline with Resnet50 and Efficienet-v2 without using pretrained models. Also Resnet50-IBN-A and Efficientnet-v2 using pretrained on ImageNet. We used two datasets: Market-1501 and

lan.nguyen2k 77 Jan 03, 2023
The source code for 'Noisy-Labeled NER with Confidence Estimation' accepted by NAACL 2021

Kun Liu*, Yao Fu*, Chuanqi Tan, Mosha Chen, Ningyu Zhang, Songfang Huang, Sheng Gao. Noisy-Labeled NER with Confidence Estimation. NAACL 2021. [arxiv]

30 Nov 12, 2022