WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

Related tags

Deep LearningWPPNets
Overview

WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution

This code belongs to the paper [1] available at https://arxiv.org/abs/2201.08157. Please cite the paper, if you use this code.

The paper [1] is The repository contains an implementation of WPPNets as introduced in [1]. It contains scripts for reproducing the numerical example Texture superresolution in Section 5.2.

Moreover, the file wgenpatex.py is adapted from [2] available at https://github.com/johertrich/Wasserstein_Patch_Prior and is adapted from [3]. Furthermore, the folder model is adapted from [5] available at https://github.com/hellloxiaotian/ACNet.

The folders test_img and training_img contain parts of the textures from [4].

For questions and bug reports, please contact Fabian Altekrueger (fabian.altekrueger(at)hu-berlin.de).

CONTENTS

  1. REQUIREMENTS
  2. USAGE AND EXAMPLES
  3. REFERENCES

1. REQUIREMENTS

The code requires several Python packages. We tested the code with Python 3.9.7 and the following package versions:

  • pytorch 1.10.0
  • matplotlib 3.4.3
  • numpy 1.21.2
  • pykeops 1.5

Usually the code is also compatible with some other versions of the corresponding Python packages.

2. USAGE AND EXAMPLES

You can start the training of the WPPNet by calling the scripts. If you want to load the existing network, please set retrain to False. Checkpoints are saved automatically during training such that the progress of the reconstructions is observable. Feel free to vary the parameters and see what happens.

TEXTURE GRASS

The script run_grass.py is the implementation of the superresolution example in [1, Section 5.2] for the Kylberg Texture [4] grass which is available at https://kylberg.org/kylberg-texture-dataset-v-1-0. The high-resolution ground truth and the reference image are different 600×600 sections cropped from the original texture images. Similarly, the low-resolution training data is generated by cropping 100×100 sections from the texture images, artificially downsampling it by a predefined forward operator f and adding Gaussian noise. For more details on the downsampling process, see [1, Section 5.2].

TEXTURE FLOOR

The script run_floor.py is the implementation of the superresolution example in [1, Section 5.2] for the Kylberg Texture [4] Floor which is available at https://kylberg.org/kylberg-texture-dataset-v-1-0. The high-resolution ground truth and the reference image are different 600×600 sections cropped from the original texture images. Similarly, the low-resolution training data is generated by cropping 100×100 sections from the texture images, artificially downsampling it by a predefined forward operator f and adding Gaussian noise. For more details on the downsampling process, see [1, Section 5.2].

3. REFERENCES

[1] F. Altekrueger, J. Hertrich.
WPPNets: Unsupervised CNN Training with Wasserstein Patch Priors for Image Superresolution.
ArXiv Preprint#2201.08157

[2] J. Hertrich, A. Houdard and C. Redenbach.
Wasserstein Patch Prior for Image Superresolution.
ArXiv Preprint#2109.12880

[3] A. Houdard, A. Leclaire, N. Papadakis and J. Rabin.
Wasserstein Generative Models for Patch-based Texture Synthesis.
ArXiv Preprint#2007.03408

[4] G. Kylberg.
The Kylberg texture dataset v. 1.0.
Centre for Image Analysis, Swedish University of Agricultural Sciences and Uppsala University, 2011

[5] C. Tian, Y. Xu, W. Zuo, C.-W. Lin, and D. Zhang.
Asymmetric CNN for image superresolution.
IEEE Transactions on Systems, Man, and Cybernetics: Systems, 2021.

Owner
Fabian Altekrueger
Fabian Altekrueger
Code for the paper "JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design"

JANUS: Parallel Tempered Genetic Algorithm Guided by Deep Neural Networks for Inverse Molecular Design This repository contains code for the paper: JA

Aspuru-Guzik group repo 55 Nov 29, 2022
Wide Residual Networks (WideResNets) in PyTorch

Wide Residual Networks (WideResNets) in PyTorch WideResNets for CIFAR10/100 implemented in PyTorch. This implementation requires less GPU memory than

Jason Kuen 296 Dec 27, 2022
Locally Constrained Self-Attentive Sequential Recommendation

LOCKER This is the pytorch implementation of this paper: Locally Constrained Self-Attentive Sequential Recommendation. Zhankui He, Handong Zhao, Zhe L

Zhankui (Aaron) He 8 Jul 30, 2022
Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Pretrained models for Jax/Flax: StyleGAN2, GPT2, VGG, ResNet.

Matthias Wright 169 Dec 26, 2022
Contrastive Language-Image Pretraining

CLIP [Blog] [Paper] [Model Card] [Colab] CLIP (Contrastive Language-Image Pre-Training) is a neural network trained on a variety of (image, text) pair

OpenAI 11.5k Jan 08, 2023
Code for testing convergence rates of Lipschitz learning on graphs

📈 LipschitzLearningRates The code in this repository reproduces the experimental results on convergence rates for k-nearest neighbor graph infinity L

2 Dec 20, 2021
Dense matching library based on PyTorch

Dense Matching A general dense matching library based on PyTorch. For any questions, issues or recommendations, please contact Prune at

Prune Truong 399 Dec 28, 2022
Code for the paper "Unsupervised Contrastive Learning of Sound Event Representations", ICASSP 2021.

Unsupervised Contrastive Learning of Sound Event Representations This repository contains the code for the following paper. If you use this code or pa

Eduardo Fonseca 81 Dec 22, 2022
A SAT-based sudoku solver

SAT Sudoku solver A SAT-based Sudoku solver made in the context of a small project in the "Logic Problem Solving" class in the first year at the Polyt

Alexandre Malfreyt 5 Apr 15, 2022
Source code for paper "ATP: AMRize Than Parse! Enhancing AMR Parsing with PseudoAMRs" @NAACL-2022

ATP: AMRize Then Parse! Enhancing AMR Parsing with PseudoAMRs Hi this is the source code of our paper "ATP: AMRize Then Parse! Enhancing AMR Parsing w

Chen Liang 13 Nov 23, 2022
This is an official implementation of our CVPR 2021 paper "Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression" (https://arxiv.org/abs/2104.02300)

Bottom-Up Human Pose Estimation Via Disentangled Keypoint Regression Introduction In this paper, we are interested in the bottom-up paradigm of estima

HRNet 367 Dec 27, 2022
A curated list of awesome Active Learning

Awesome Active Learning 🤩 A curated list of awesome Active Learning ! 🤩 Background (image source: Settles, Burr) What is Active Learning? Active lea

BAI Fan 431 Jan 03, 2023
[CVPR 2021] Official PyTorch Implementation for "Iterative Filter Adaptive Network for Single Image Defocus Deblurring"

IFAN: Iterative Filter Adaptive Network for Single Image Defocus Deblurring Checkout for the demo (GUI/Google Colab)! The GUI version might occasional

Junyong Lee 173 Dec 30, 2022
A very tiny, very simple, and very secure file encryption tool.

Picocrypt is a very tiny (hence "Pico"), very simple, yet very secure file encryption tool. It uses the modern ChaCha20-Poly1305 cipher suite as well

Evan Su 1k Dec 30, 2022
A toy compiler that can convert Python scripts to pickle bytecode 🥒

Pickora 🐰 A small compiler that can convert Python scripts to pickle bytecode. Requirements Python 3.8+ No third-party modules are required. Usage us

ꌗᖘ꒒ꀤ꓄꒒ꀤꈤꍟ 68 Jan 04, 2023
Codes for CyGen, the novel generative modeling framework proposed in "On the Generative Utility of Cyclic Conditionals" (NeurIPS-21)

On the Generative Utility of Cyclic Conditionals This repository is the official implementation of "On the Generative Utility of Cyclic Conditionals"

Chang Liu 44 Nov 16, 2022
Demonstration of the Model Training as a CI/CD System in Vertex AI

Model Training as a CI/CD System This project demonstrates the machine model training as a CI/CD system in GCP platform. You will see more detailed wo

Chansung Park 19 Dec 28, 2022
Densely Connected Convolutional Networks, In CVPR 2017 (Best Paper Award).

Densely Connected Convolutional Networks (DenseNets) This repository contains the code for DenseNet introduced in the following paper Densely Connecte

Zhuang Liu 4.5k Jan 03, 2023
This Deep Learning Model Predicts that from which disease you are suffering.

Deep-Learning-Project This Deep Learning Model Predicts that from which disease you are suffering. This Project Covers the Topics of Deep Learning Int

Jai Viral Doshi 0 Jan 20, 2022
Use tensorflow to implement a Deep Neural Network for real time lane detection

LaneNet-Lane-Detection Use tensorflow to implement a Deep Neural Network for real time lane detection mainly based on the IEEE IV conference paper "To

MaybeShewill-CV 1.9k Jan 08, 2023