Text Generation by Learning from Demonstrations

Overview

Text Generation by Learning from Demonstrations

The README was last updated on March 7, 2021. The repo is based on fairseq (v0.9.?).

Paper

arXiv

Prerequisites

Per fairseq usage, we need to install this particular modifed version fairseq. The simplest way: pip install --editable ./.

Due to pytorch changes, and given that we're using a slightly older version of fairseq (see below), please use pytorch version <= 1.6.0. However, the GOLD algorithm can be easily implemented on top of the latest fairseq (or most text generation codebases).

Datasets

For downloading CNN/DM and XSum datasets, we follow the instructions here; note that this link does not correspond to the latest fairseq. Our version of the CNN/DM input articles include the prepended "(CNN)" tags. For downloading IWSLT14 De-En dataset, we follow the instructions here. The binary files are provided in our repo, in the directory data-bin. For downloading the particular version of our NQG dataset, we follow the instructions here. The binary files are provided upon request.

Code: experiments on transformer models using fairseq

For reproducibility, the code is based on a April 2020 version of fairseq (based on release v0.9.0). However, it is easy to reimplement the GOLD algorithm in the latest version of fairseq and in another frameworks.

How to implement in the latest version of fairseq?

  • If your GPUs "have large memory", then most of the implementation happens around the criterion code (for question generation, summarization, translation, the py file is ./fairseq/criterions/label_smoothed_cross_entropy.py in the April 2020 version of fairseq). Note that the implementation in this repo uses this approach.
    • "Have large memory": Meaning the GPUs can store pi, pi-tilde, p_MLE at the same time; see Algorithm 1 in the paper. In our experiments (using the same datasets, same batch size, etc.), this would imply that the GPUs have ~24G of memory.
  • If your GPUs cannot fit the above models, then you may need to input p_MLE probabilities as features. This can be done by first saving the probabilities into a text file or pickle file, and then loading them in the load_langpair_dataset function of ./fairseq/tasks/translation.py (or other corresponding files for other tasks).

How to implement in other codebase?

  • See Algorithm 1 in the paper. The majority of the work will happen around the loss computation. We need to have three different models ready when computing losses: (1) pi, the network we're training; (2) pi-tilde, a slightly older version of pi (created to ensure training stability, similar to the periodic synchronization in deep Q-learning; (3) p_MLE, to compute rewards (but this can be pre-loaded in the form of input features, in case the GPU cannot fit the third model).

BART summarization generation fairseq issue

Given that there has been minor bugs with the fairseq BART summarization code (details on original fairseq github), we make the corresponding changes according to the fairseq authors' recommendation. (1) In ./fairseq/sequence_generator.py, see the modification here. (2) In ./fairseq/tasks/fairseq_task.py, see the modification here. (3) In ./fairseq/models/bart/hub_interface.py, see the modification here. The above is already implemented in this repo. But if we're reimplementing the GOLD code in the latest fairseq, we need to beware of this issue (and keep the three modifications in mind).

How to run?

Training

The entry point for training is ./fairseq_cli/train.py. See ./fairseq/options.py for possible flags. For CNN/DM, the script for running GOLD-p is provided in run_cnndm_goldp.sh; the script for running GOLD-s (which often performs better than GOLD-p) is provided in run_cnndm_golds.sh. Some other scripts for other tasks are also provided. For explanations of flags, please refer to ./fairseq/options.py as well as Algorithm 1 in the paper.

Validation

Note that to validate, one possibility is to find the checkpoint that corresponds to highest BLEU/ROUGE-2 score on dev set. We cannot validate according to NLL loss, given that in the paper, we showed that our models achieve higher accuracy but higher perplexity (and NLL loss). Do not use checkpoint_best.pt. IWSLT14 De-En validation is implemented. For summarization, please use run_cnndm_validation.py (similar to run_cnndm_inference.py) as an example to loop through all checkpoints. Then, compute the ROUGE based on run_cnndm_validation_step2.sh (perhaps with small modifications).

Evaluation/inference

For BART evaluation, we use the inference scripts provided in run_cnndm_inference.sh, run_xsum_inference.sh, run_squad_inference.sh. For IWSLT14 De-En inference, the following few lines will do.

python -W ignore [path-to-fairseq_cli/generate.py] data-bin/iwslt14.tokenized.de-en \
    --path [path-to-model-checkpoint.pt] \
    --batch-size 128 --beam 5 --remove-bpe --gen-subset test  > [path-to-save-to-file]

Transformer models

Please ensure the data is processed appropriately before using the models.

MLE model checkpoints

GOLD-s model checkpoints

Not a lot of hyperparameter search was done for the transformer models, so it is likely that more search (on hyperparameters, on architecture) could reach better performance.

Moreover, for summarization models, we use pyrouge+files2rouge to evaluate, based on the fairseq instructions after pyrouge+files2rouge installation. The package files2rouge has a common WordNet-2.0.exc.db error; see this link for the fix.

Citation, authors, and contact

The bibtex entry

Richard Yuanzhe Pang

He He

Official code release for "GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis"

GRAF This repository contains official code for the paper GRAF: Generative Radiance Fields for 3D-Aware Image Synthesis. You can find detailed usage i

349 Dec 29, 2022
[ICCV 2021] FaPN: Feature-aligned Pyramid Network for Dense Image Prediction

FaPN: Feature-aligned Pyramid Network for Dense Image Prediction [arXiv] [Project Page] @inproceedings{ huang2021fapn, title={{FaPN}: Feature-alig

EMI-Group 175 Dec 30, 2022
A scanpy extension to analyse single-cell TCR and BCR data.

Scirpy: A Scanpy extension for analyzing single-cell immune-cell receptor sequencing data Scirpy is a scalable python-toolkit to analyse T cell recept

ICBI 145 Jan 03, 2023
MINERVA: An out-of-the-box GUI tool for offline deep reinforcement learning

MINERVA is an out-of-the-box GUI tool for offline deep reinforcement learning, designed for everyone including non-programmers to do reinforcement learning as a tool.

Takuma Seno 80 Nov 06, 2022
SASM - simple crossplatform IDE for NASM, MASM, GAS and FASM assembly languages

SASM (SimpleASM) - простая кроссплатформенная среда разработки для языков ассемблера NASM, MASM, GAS, FASM с подсветкой синтаксиса и отладчиком. В SA

Dmitriy Manushin 5.6k Jan 06, 2023
Plato: A New Framework for Federated Learning Research

a new software framework to facilitate scalable federated learning research.

System <a href=[email protected] Lab"> 192 Jan 05, 2023
Code for Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019)

Talking Face Generation by Adversarially Disentangled Audio-Visual Representation (AAAI 2019) We propose Disentangled Audio-Visual System (DAVS) to ad

Hang_Zhou 750 Dec 23, 2022
Generalized Decision Transformer for Offline Hindsight Information Matching

Generalized Decision Transformer for Offline Hindsight Information Matching [arxiv] If you use this codebase for your research, please cite the paper:

Hiroki Furuta 35 Dec 12, 2022
[CVPR 21] Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), 2021.

Vectorization and Rasterization: Self-Supervised Learning for Sketch and Handwriting, CVPR 2021. Ayan Kumar Bhunia, Pinaki nath Chowdhury, Yongxin Yan

Ayan Kumar Bhunia 44 Dec 12, 2022
Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation.

Physics-Aware Training (PAT) is a method to train real physical systems with backpropagation. It was introduced in Wright, Logan G. & Onodera, Tatsuhiro et al. (2021)1 to train Physical Neural Networ

McMahon Lab 230 Jan 05, 2023
ICCV2021, Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet

Tokens-to-Token ViT: Training Vision Transformers from Scratch on ImageNet, ICCV 2021 Update: 2021/03/11: update our new results. Now our T2T-ViT-14 w

YITUTech 1k Dec 31, 2022
Selective Wavelet Attention Learning for Single Image Deraining

SWAL Code for Paper "Selective Wavelet Attention Learning for Single Image Deraining" Prerequisites Python 3 PyTorch Models We provide the models trai

Bobo 9 Jun 17, 2022
T2F: text to face generation using Deep Learning

⭐ [NEW] ⭐ T2F - 2.0 Teaser (coming soon ...) Please note that all the faces in the above samples are generated ones. The T2F 2.0 will be using MSG-GAN

Animesh Karnewar 533 Dec 22, 2022
DL course co-developed by YSDA, HSE and Skoltech

Deep learning course This repo supplements Deep Learning course taught at YSDA and HSE @fall'21. For previous iteration visit the spring21 branch. Lec

Yandex School of Data Analysis 1.3k Dec 30, 2022
This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation

TransUNet This repo holds code for TransUNet: Transformers Make Strong Encoders for Medical Image Segmentation Usage

1.4k Jan 04, 2023
Awesome Remote Sensing Toolkit based on PaddlePaddle.

基于飞桨框架开发的高性能遥感图像处理开发套件,端到端地完成从训练到部署的全流程遥感深度学习应用。 最新动态 PaddleRS 即将发布alpha版本!欢迎大家试用 简介 PaddleRS是遥感科研院所、相关高校共同基于飞桨开发的遥感处理平台,支持遥感图像分类,目标检测,图像分割,以及变化检测等常用遥

146 Dec 11, 2022
A mini lib that implements several useful functions binding to PyTorch in C++.

Torch-gather A mini library that implements several useful functions binding to PyTorch in C++. What does gather do? Why do we need it? When dealing w

maxwellzh 8 Sep 07, 2022
D2Go is a toolkit for efficient deep learning

D2Go D2Go is a production ready software system from FacebookResearch, which supports end-to-end model training and deployment for mobile platforms. W

Facebook Research 744 Jan 04, 2023
Source code, datasets and trained models for the paper Learning Advanced Mathematical Computations from Examples (ICLR 2021), by François Charton, Amaury Hayat (ENPC-Rutgers) and Guillaume Lample

Maths from examples - Learning advanced mathematical computations from examples This is the source code and data sets relevant to the paper Learning a

Facebook Research 171 Nov 23, 2022
Age Progression/Regression by Conditional Adversarial Autoencoder

Age Progression/Regression by Conditional Adversarial Autoencoder (CAAE) TensorFlow implementation of the algorithm in the paper Age Progression/Regre

Zhifei Zhang 603 Dec 22, 2022