This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018

Overview

Learning-to-See-in-the-Dark

This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018, by Chen Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun.

Project Website
Paper

teaser

This code includes the default model for training and testing on the See-in-the-Dark (SID) dataset.

Demo Video

https://youtu.be/qWKUFK7MWvg

Setup

Requirement

Required python (version 2.7) libraries: Tensorflow (>=1.1) + Scipy + Numpy + Rawpy.

Tested in Ubuntu + Intel i7 CPU + Nvidia Titan X (Pascal) with Cuda (>=8.0) and CuDNN (>=5.0). CPU mode should also work with minor changes but not tested.

Dataset

Update Aug, 2018: We found some misalignment with the ground-truth for image 10034, 10045, 10172. Please remove those images for quantitative results, but they still can be used for qualitative evaluations.

You can download it directly from Google drive for the Sony (25 GB) and Fuji (52 GB) sets.

There is download limit by Google drive in a fixed period of time. If you cannot download because of this, try these links: Sony (25 GB) and Fuji (52 GB).

New: we provide file parts in Baidu Drive now. After you download all the parts, you can combine them together by running: "cat SonyPart* > Sony.zip" and "cat FujiPart* > Fuji.zip".

The file lists are provided. In each row, there are a short-exposed image path, the corresponding long-exposed image path, camera ISO and F number. Note that multiple short-exposed images may correspond to the same long-exposed image.

The file name contains the image information. For example, in "10019_00_0.033s.RAF", the first digit "1" means it is from the test set ("0" for training set and "2" for validation set); "0019" is the image ID; the following "00" is the number in the sequence/burst; "0.033s" is the exposure time 1/30 seconds.

Testing

  1. Clone this repository.
  2. Download the pretrained models by running
python download_models.py
  1. Run "python test_Sony.py". This will generate results on the Sony test set.
  2. Run "python test_Fuji.py". This will generate results on the Fuji test set.

By default, the code takes the data in the "./dataset/Sony/" folder and "./dataset/Fuji/". If you save the dataset in other folders, please change the "input_dir" and "gt_dir" at the beginning of the code.

Training new models

  1. To train the Sony model, run "python train_Sony.py". The result and model will be save in "result_Sony" folder by default.
  2. To train the Fuji model, run "python train_Fuji.py". The result and model will be save in "result_Fuji" folder by default.

By default, the code takes the data in the "./dataset/Sony/" folder and "./dataset/Fuji/". If you save the dataset in other folders, please change the "input_dir" and "gt_dir" at the beginning of the code.

Loading the raw data and proccesing by Rawpy takes significant more time than the backpropagation. By default, the code will load all the groundtruth data processed by Rawpy into memory without 8-bit or 16-bit quantization. This requires at least 64 GB RAM for training the Sony model and 128 GB RAM for the Fuji model. If you need to train it on a machine with less RAM, you may need to revise the code and use the groundtruth data on the disk. We provide the 16-bit groundtruth images processed by Rawpy: Sony (12 GB) and Fuji (22 GB).

Citation

If you use our code and dataset for research, please cite our paper:

Chen Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun, "Learning to See in the Dark", in CVPR, 2018.

License

MIT License.

FAQ

  1. Can I test my own data using the provided model?

The proposed method is designed for sensor raw data. The pretrained model probably not work for data from another camera sensor. We do not have support for other camera data. It also does not work for images after camera ISP, i.e., the JPG or PNG data.

  1. Will this be in any product?

This is a research project and a prototype to prove a concept.

  1. How can I train the model using my own raw data?

Generally, you just need to subtract the right black level and pack the data in the same way of Sony/Fuji data. If using rawpy, you need to read the black level instead of using 512 in the provided code. The data range may also differ if it is not 14 bits. You need to normalize it to [0,1] for the network input.

  1. Why the results are all black?

It is often because the pre-trained model not downloaded properly. After downloading, you should get 4 checkpoint related files for the model.

Questions

If you have additional questions after reading the FAQ, please email to [email protected].

A tf.keras implementation of Facebook AI's MadGrad optimization algorithm

MADGRAD Optimization Algorithm For Tensorflow This package implements the MadGrad Algorithm proposed in Adaptivity without Compromise: A Momentumized,

20 Aug 18, 2022
Jupyter Dock is a set of Jupyter Notebooks for performing molecular docking protocols interactively, as well as visualizing, converting file formats and analyzing the results.

Molecular Docking integrated in Jupyter Notebooks Description | Citation | Installation | Examples | Limitations | License Table of content Descriptio

Angel J. Ruiz Moreno 173 Dec 25, 2022
[SIGGRAPH 2022 Journal Track] AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars

AvatarCLIP: Zero-Shot Text-Driven Generation and Animation of 3D Avatars Fangzhou Hong1*  Mingyuan Zhang1*  Liang Pan1  Zhongang Cai1,2,3  Lei Yang2 

Fangzhou Hong 749 Jan 04, 2023
An open source Python package for plasma science that is under development

PlasmaPy PlasmaPy is an open source, community-developed Python 3.7+ package for plasma science. PlasmaPy intends to be for plasma science what Astrop

PlasmaPy 444 Jan 07, 2023
A Python Library for Graph Outlier Detection (Anomaly Detection)

PyGOD is a Python library for graph outlier detection (anomaly detection). This exciting yet challenging field has many key applications, e.g., detect

PyGOD Team 757 Jan 04, 2023
Residual Dense Net De-Interlace Filter (RDNDIF)

Residual Dense Net De-Interlace Filter (RDNDIF) Work in progress deep de-interlacer filter. It is based on the architecture proposed by Bernasconi et

Louis 7 Feb 15, 2022
Old Photo Restoration (Official PyTorch Implementation)

Bringing Old Photo Back to Life (CVPR 2020 oral)

Microsoft 11.3k Dec 30, 2022
Unofficial implementation of Google "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization" in PyTorch

CutPaste CutPaste: image from paper Unofficial implementation of Google's "CutPaste: Self-Supervised Learning for Anomaly Detection and Localization"

Lilit Yolyan 59 Nov 27, 2022
INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing

INSPIRED: A Transparent Dialogue Dataset for Interactive Semantic Parsing Existing studies on semantic parsing focus primarily on mapping a natural-la

7 Aug 22, 2022
Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral]

Learning to Disambiguate Strongly Interacting Hands via Probabilistic Per-Pixel Part Segmentation [3DV 2021 Oral] Learning to Disambiguate Strongly In

Zicong Fan 40 Dec 22, 2022
Security evaluation module with onnx, pytorch, and SecML.

🚀 🐼 🔥 PandaVision Integrate and automate security evaluations with onnx, pytorch, and SecML! Installation Starting the server without Docker If you

Maura Pintor 11 Apr 12, 2022
hySLAM is a hybrid SLAM/SfM system designed for mapping

HySLAM Overview hySLAM is a hybrid SLAM/SfM system designed for mapping. The system is based on ORB-SLAM2 with some modifications and refactoring. Raú

Brian Hopkinson 15 Oct 10, 2022
Differentiable Abundance Matching With Python

shamnet Differentiable Stellar Population Synthesis Installation You can install shamnet with pip. Installation dependencies are numpy, jax, corrfunc,

5 Dec 17, 2021
yolov5 deepsort 行人 车辆 跟踪 检测 计数

yolov5 deepsort 行人 车辆 跟踪 检测 计数 实现了 出/入 分别计数。 默认是 南/北 方向检测,若要检测不同位置和方向,可在 main.py 文件第13行和21行,修改2个polygon的点。 默认检测类别:行人、自行车、小汽车、摩托车、公交车、卡车。 检测类别可在 detect

554 Dec 30, 2022
Application of K-means algorithm on a music dataset after a dimensionality reduction with PCA

PCA for dimensionality reduction combined with Kmeans Goal The Goal of this notebook is to apply a dimensionality reduction on a big dataset in order

Arturo Ghinassi 0 Sep 17, 2022
A PaddlePaddle version of Neural Renderer, refer to its PyTorch version

Neural 3D Mesh Renderer in PadddlePaddle A PaddlePaddle version of Neural Renderer, refer to its PyTorch version Install Run: pip install neural-rende

AgentMaker 13 Jul 12, 2022
Official repository for Jia, Raghunathan, Göksel, and Liang, "Certified Robustness to Adversarial Word Substitutions" (EMNLP 2019)

Certified Robustness to Adversarial Word Substitutions This is the official GitHub repository for the following paper: Certified Robustness to Adversa

Robin Jia 38 Oct 16, 2022
My 1st place solution at Kaggle Hotel-ID 2021

1st place solution at Kaggle Hotel-ID My 1st place solution at Kaggle Hotel-ID to Combat Human Trafficking 2021. https://www.kaggle.com/c/hotel-id-202

Kohei Ozaki 18 Aug 19, 2022
TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification

TransMIL: Transformer based Correlated Multiple Instance Learning for Whole Slide Image Classification [NeurIPS 2021] Abstract Multiple instance learn

132 Dec 30, 2022
A flexible and extensible framework for gait recognition.

A flexible and extensible framework for gait recognition. You can focus on designing your own models and comparing with state-of-the-arts easily with the help of OpenGait.

Shiqi Yu 335 Dec 22, 2022