This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018

Overview

Learning-to-See-in-the-Dark

This is a Tensorflow implementation of Learning to See in the Dark in CVPR 2018, by Chen Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun.

Project Website
Paper

teaser

This code includes the default model for training and testing on the See-in-the-Dark (SID) dataset.

Demo Video

https://youtu.be/qWKUFK7MWvg

Setup

Requirement

Required python (version 2.7) libraries: Tensorflow (>=1.1) + Scipy + Numpy + Rawpy.

Tested in Ubuntu + Intel i7 CPU + Nvidia Titan X (Pascal) with Cuda (>=8.0) and CuDNN (>=5.0). CPU mode should also work with minor changes but not tested.

Dataset

Update Aug, 2018: We found some misalignment with the ground-truth for image 10034, 10045, 10172. Please remove those images for quantitative results, but they still can be used for qualitative evaluations.

You can download it directly from Google drive for the Sony (25 GB) and Fuji (52 GB) sets.

There is download limit by Google drive in a fixed period of time. If you cannot download because of this, try these links: Sony (25 GB) and Fuji (52 GB).

New: we provide file parts in Baidu Drive now. After you download all the parts, you can combine them together by running: "cat SonyPart* > Sony.zip" and "cat FujiPart* > Fuji.zip".

The file lists are provided. In each row, there are a short-exposed image path, the corresponding long-exposed image path, camera ISO and F number. Note that multiple short-exposed images may correspond to the same long-exposed image.

The file name contains the image information. For example, in "10019_00_0.033s.RAF", the first digit "1" means it is from the test set ("0" for training set and "2" for validation set); "0019" is the image ID; the following "00" is the number in the sequence/burst; "0.033s" is the exposure time 1/30 seconds.

Testing

  1. Clone this repository.
  2. Download the pretrained models by running
python download_models.py
  1. Run "python test_Sony.py". This will generate results on the Sony test set.
  2. Run "python test_Fuji.py". This will generate results on the Fuji test set.

By default, the code takes the data in the "./dataset/Sony/" folder and "./dataset/Fuji/". If you save the dataset in other folders, please change the "input_dir" and "gt_dir" at the beginning of the code.

Training new models

  1. To train the Sony model, run "python train_Sony.py". The result and model will be save in "result_Sony" folder by default.
  2. To train the Fuji model, run "python train_Fuji.py". The result and model will be save in "result_Fuji" folder by default.

By default, the code takes the data in the "./dataset/Sony/" folder and "./dataset/Fuji/". If you save the dataset in other folders, please change the "input_dir" and "gt_dir" at the beginning of the code.

Loading the raw data and proccesing by Rawpy takes significant more time than the backpropagation. By default, the code will load all the groundtruth data processed by Rawpy into memory without 8-bit or 16-bit quantization. This requires at least 64 GB RAM for training the Sony model and 128 GB RAM for the Fuji model. If you need to train it on a machine with less RAM, you may need to revise the code and use the groundtruth data on the disk. We provide the 16-bit groundtruth images processed by Rawpy: Sony (12 GB) and Fuji (22 GB).

Citation

If you use our code and dataset for research, please cite our paper:

Chen Chen, Qifeng Chen, Jia Xu, and Vladlen Koltun, "Learning to See in the Dark", in CVPR, 2018.

License

MIT License.

FAQ

  1. Can I test my own data using the provided model?

The proposed method is designed for sensor raw data. The pretrained model probably not work for data from another camera sensor. We do not have support for other camera data. It also does not work for images after camera ISP, i.e., the JPG or PNG data.

  1. Will this be in any product?

This is a research project and a prototype to prove a concept.

  1. How can I train the model using my own raw data?

Generally, you just need to subtract the right black level and pack the data in the same way of Sony/Fuji data. If using rawpy, you need to read the black level instead of using 512 in the provided code. The data range may also differ if it is not 14 bits. You need to normalize it to [0,1] for the network input.

  1. Why the results are all black?

It is often because the pre-trained model not downloaded properly. After downloading, you should get 4 checkpoint related files for the model.

Questions

If you have additional questions after reading the FAQ, please email to [email protected].

This is the official implementation of the paper "Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation".

[CVPRW 2021] - Object Propagation via Inter-Frame Attentions for Temporally Stable Video Instance Segmentation

Anirudh S Chakravarthy 6 May 03, 2022
This is the official repository for our paper: ''Pruning Self-attentions into Convolutional Layers in Single Path''.

Pruning Self-attentions into Convolutional Layers in Single Path This is the official repository for our paper: Pruning Self-attentions into Convoluti

Zhuang AI Group 77 Dec 26, 2022
Complete-IoU (CIoU) Loss and Cluster-NMS for Object Detection and Instance Segmentation (YOLACT)

Complete-IoU Loss and Cluster-NMS for Improving Object Detection and Instance Segmentation. Our paper is accepted by IEEE Transactions on Cybernetics

290 Dec 25, 2022
Repo for CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning

CReST in Tensorflow 2 Code for the paper: "CReST: A Class-Rebalancing Self-Training Framework for Imbalanced Semi-Supervised Learning" by Chen Wei, Ki

Google Research 75 Nov 01, 2022
[CVPR-2021] UnrealPerson: An adaptive pipeline for costless person re-identification

UnrealPerson: An Adaptive Pipeline for Costless Person Re-identification In our paper (arxiv), we propose a novel pipeline, UnrealPerson, that decreas

ZhangTianyu 70 Oct 10, 2022
Source code for our paper "Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures"

Molecular Mechanics-Driven Graph Neural Network with Multiplex Graph for Molecular Structures Code for the Multiplex Molecular Graph Neural Network (M

shzhang 59 Dec 10, 2022
External Attention Network

Beyond Self-attention: External Attention using Two Linear Layers for Visual Tasks paper : https://arxiv.org/abs/2105.02358 Jittor code will come soon

MenghaoGuo 357 Dec 11, 2022
Code + pre-trained models for the paper Keeping Your Eye on the Ball Trajectory Attention in Video Transformers

Motionformer This is an official pytorch implementation of paper Keeping Your Eye on the Ball: Trajectory Attention in Video Transformers. In this rep

Facebook Research 192 Dec 23, 2022
HashNeRF-pytorch - Pure PyTorch Implementation of NVIDIA paper on Instant Training of Neural Graphics primitives

HashNeRF-pytorch Instant-NGP recently introduced a Multi-resolution Hash Encodin

Yash Sanjay Bhalgat 616 Jan 06, 2023
ImageBART: Bidirectional Context with Multinomial Diffusion for Autoregressive Image Synthesis

ImageBART NeurIPS 2021 Patrick Esser*, Robin Rombach*, Andreas Blattmann*, Björn Ommer * equal contribution arXiv | BibTeX | Poster Requirements A sui

CompVis Heidelberg 110 Jan 01, 2023
In Search of Probeable Generalization Measures

In Search of Probeable Generalization Measures Exciting News! In Search of Probeable Generalization Measures has been accepted to the International Co

Mahdi S. Hosseini 6 Sep 11, 2022
Omnidirectional camera calibration in python

Omnidirectional Camera Calibration Key features pure python initial solution based on A Toolbox for Easily Calibrating Omnidirectional Cameras (Davide

Thomas Pönitz 12 Nov 22, 2022
Controlling the MicriSpotAI robot from scratch

Project-MicroSpot-AI Controlling the MicriSpotAI robot from scratch Colaborators Alexander Dennis Components from MicroSpot The MicriSpotAI has the fo

Dennis Núñez-Fernández 5 Oct 20, 2022
The authors' official PyTorch SigWGAN implementation

The authors' official PyTorch SigWGAN implementation This repository is the official implementation of [Sig-Wasserstein GANs for Time Series Generatio

9 Jun 16, 2022
Seg-Torch for Image Segmentation with Torch

Seg-Torch for Image Segmentation with Torch This work was sparked by my personal research on simple segmentation methods based on deep learning. It is

Eren Gölge 37 Dec 12, 2022
In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard test set accuracy

PixMix Introduction In real-world applications of machine learning, reliable and safe systems must consider measures of performance beyond standard te

Andy Zou 79 Dec 30, 2022
Code for our CVPR 2021 paper "MetaCam+DSCE"

Joint Noise-Tolerant Learning and Meta Camera Shift Adaptation for Unsupervised Person Re-Identification (CVPR'21) Introduction Code for our CVPR 2021

FlyingRoastDuck 59 Oct 31, 2022
Biomarker identification for COVID-19 Severity in BALF cells Single-cell RNA-seq data

scBALF Covid-19 dataset Analysis Here is the Github page that has the codes for the bioinformatics pipeline described in the paper COVID-Datathon: Bio

Nami Niyakan 2 May 21, 2022
Semi-Supervised Signed Clustering Graph Neural Network (and Implementation of Some Spectral Methods)

SSSNET SSSNET: Semi-Supervised Signed Network Clustering For details, please read our paper. Environment Setup Overview The project has been tested on

Yixuan He 9 Nov 24, 2022
Deep Probabilistic Programming Course @ DIKU

Deep Probabilistic Programming Course @ DIKU

52 May 14, 2022