Dataset used in "PlantDoc: A Dataset for Visual Plant Disease Detection" accepted in CODS-COMAD 2020

Overview

PlantDoc: A Dataset for Visual Plant Disease Detection

This repository contains the Cropped-PlantDoc dataset used for benchmarking classification models in the paper titled "PlantDoc: A Dataset for Visual Plant Disease Detection" which was accepted in the Research Track at ACM India Joint International Conference on Data Science and Management of Data (CoDS-COMAD 2020).

While the Object-Detection dataset can accessed through the following link.

Plantdoc Examples

Abstract

India loses 35% of the annual crop yield due to plant diseases. Early detection of plant diseases remains difficult due to the lack of lab infrastructure and expertise. In this paper, we explore the possibility of computer vision approaches for scalable and early plant disease detection. The lack of availability of sufficiently large-scale non-lab data set remains a major challenge for enabling vision based plant disease detection. Against this background, we present PlantDoc: a dataset for visual plant disease detection. Our dataset contains 2,598 data points in total across 13 plant species and up to 17 classes of diseases, involving approximately 300 human hours of effort in annotating internet scraped images. To show the efficacy of our dataset, we learn 3 models for the task of plant disease classification. Our results show that modelling using our dataset can increase the classification accuracy by up to 31%. We believe that our dataset can help reduce the entry barrier of computer vision techniques in plant disease detection.

Paper

For full paper, refer Arxiv and ACM

Authors

Davinder Singh*, Naman Jain*, Pranjali Jain*, Pratik Kayal*, Sudhakar Kumawat and Nipun Batra

Bibtex

@inproceedings{10.1145/3371158.3371196,
author = {Singh, Davinder and Jain, Naman and Jain, Pranjali and Kayal, Pratik and Kumawat, Sudhakar and Batra, Nipun},
title = {PlantDoc: A Dataset for Visual Plant Disease Detection},
year = {2020},
isbn = {9781450377386},
publisher = {Association for Computing Machinery},
address = {New York, NY, USA},
url = {https://doi.org/10.1145/3371158.3371196},
doi = {10.1145/3371158.3371196},
booktitle = {Proceedings of the 7th ACM IKDD CoDS and 25th COMAD},
pages = {249โ€“253},
numpages = {5},
keywords = {Deep Learning, Object Detection, Image Classification},
location = {Hyderabad, India},
series = {CoDS COMAD 2020}
}

License

Creative Commons Attribution 4.0 International Link

Owner
Pratik Kayal
Pratik Kayal
Official implementation for paper: A Latent Transformer for Disentangled Face Editing in Images and Videos.

A Latent Transformer for Disentangled Face Editing in Images and Videos Official implementation for paper: A Latent Transformer for Disentangled Face

InterDigital 108 Dec 09, 2022
License Plate Detection Application

LicensePlate_Project ๐Ÿš— ๐Ÿš™ [Project] 2021.02 ~ 2021.09 License Plate Detection Application Overview 1. ๋ฐ์ดํ„ฐ ์ˆ˜์ง‘ ๋ฐ ๋ผ๋ฒจ๋ง ์ฐจ๋Ÿ‰ ๋ฒˆํ˜ธํŒ ์ด๋ฏธ์ง€๋ฅผ ์ง์ ‘ ์ˆ˜์ง‘ํ•˜์—ฌ ๊ฐ ์ด๋ฏธ์ง€์— ๋Œ€ํ•ด '๋ฒˆํ˜ธํŒ

4 Oct 10, 2022
Training, generation, and analysis code for Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics

Location-Aware Generative Adversarial Networks (LAGAN) for Physics Synthesis This repository contains all the code used in L. de Oliveira (@lukedeo),

Deep Learning for HEP 57 Oct 22, 2022
Second-Order Neural ODE Optimizer, NeurIPS 2021 spotlight

Second-order Neural ODE Optimizer (NeurIPS 2021 Spotlight) [arXiv] โœ”๏ธ faster convergence in wall-clock time | โœ”๏ธ O(1) memory cost | โœ”๏ธ better test-tim

Guan-Horng Liu 39 Oct 22, 2022
It's final year project of Diploma Engineering. This project is based on Computer Vision.

Face-Recognition-Based-Attendance-System It's final year project of Diploma Engineering. This project is based on Computer Vision. Brief idea about ou

Neel 10 Nov 02, 2022
Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectrum sensing.

Deep-Learning-based-Spectrum-Sensing Use MATLAB to simulate the signal and extract features. Use PyTorch to build and train deep network to do spectru

10 Dec 14, 2022
Implementation of Graph Convolutional Networks in TensorFlow

Graph Convolutional Networks This is a TensorFlow implementation of Graph Convolutional Networks for the task of (semi-supervised) classification of n

Thomas Kipf 6.6k Dec 30, 2022
An open-source Deep Learning Engine for Healthcare that aims to treat & prevent major diseases

AlphaCare Background AlphaCare is a work-in-progress, open-source Deep Learning Engine for Healthcare that aims to treat and prevent major diseases. T

Siraj Raval 44 Nov 05, 2022
Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model

Equipped customers with insights about their EVs Hourly energy consumption and helped predict future charging behavior using LSTM model. Designed sample dashboard with insights and recommendation for

Yash 2 Apr 07, 2022
TransNet V2: Shot Boundary Detection Neural Network

TransNet V2: Shot Boundary Detection Neural Network This repository contains code for TransNet V2: An effective deep network architecture for fast sho

Tomรกลก Souฤek 212 Dec 27, 2022
Official implementation of the RAVE model: a Realtime Audio Variational autoEncoder

RAVE: Realtime Audio Variational autoEncoder Official implementation of RAVE: A variational autoencoder for fast and high-quality neural audio synthes

ACIDS 587 Jan 01, 2023
In this project I played with mlflow, streamlit and fastapi to create a training and prediction app on digits

Fastapi + MLflow + streamlit Setup env. I hope I covered all. pip install -r requirements.txt Start app Go in the root dir and run these Streamlit str

76 Nov 23, 2022
Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks

This is the code associated with the paper Predicting Semantic Map Representations from Images with Pyramid Occupancy Networks, published at CVPR 2020.

Thomas Roddick 219 Dec 20, 2022
TensorFlow code for the neural network presented in the paper: "Structural Language Models of Code" (ICML'2020)

SLM: Structural Language Models of Code This is an official implementation of the model described in: "Structural Language Models of Code" [PDF] To ap

73 Nov 06, 2022
Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System

Multi-Task Pre-Training for Plug-and-Play Task-Oriented Dialogue System Authors: Yixuan Su, Lei Shu, Elman Mansimov, Arshit Gupta, Deng Cai, Yi-An Lai

Amazon Web Services - Labs 123 Dec 23, 2022
Official Datasets and Implementation from our Paper "Video Class Agnostic Segmentation in Autonomous Driving".

Video Class Agnostic Segmentation [Method Paper] [Benchmark Paper] [Project] [Demo] Official Datasets and Implementation from our Paper "Video Class A

Mennatullah Siam 26 Oct 24, 2022
Deep High-Resolution Representation Learning for Human Pose Estimation

Deep High-Resolution Representation Learning for Human Pose Estimation (accepted to CVPR2019) News If you are interested in internship or research pos

HRNet 167 Dec 27, 2022
Mining-the-Social-Web-3rd-Edition - The official online compendium for Mining the Social Web, 3rd Edition (O'Reilly, 2018)

Mining the Social Web, 3rd Edition The official code repository for Mining the Social Web, 3rd Edition (O'Reilly, 2019). The book is available from Am

Mikhail Klassen 838 Jan 01, 2023
Algo-burn - Script to configure an Algorand address as a "burn" address for one or more ASA tokens

Algorand Burn Address This is a simple script to illustrate how a "burn address"

GSD 5 May 10, 2022
MODNet: Trimap-Free Portrait Matting in Real Time

MODNet is a model for real-time portrait matting with only RGB image input.

Zhanghan Ke 2.8k Dec 30, 2022