The VarCNN is an Convolution Neural Network based approach to automate Video Assistant Referee in football.

Related tags

Deep LearningVarCnn
Overview

VarCnn: The Deep Learning Powered VAR

Detailed arricle on the project using the above data can be fount at https://aamir07.medium.com/var-cnn-football-foul-or-clean-tackle-4ff6629c83db

Web App Hosted at https://share.streamlit.io/aamir09/varcnnapp/main/app.py

Tutorial on Youtube: https://www.youtube.com/watch?v=GXW7YWE3vxY

Football is the most followed sport in the world, played in more than 200M+ countries. The sport has developed a lot in the recent century and so has the technology involved in the game. The Virtual Assistant Referee (VAR) is one of them and has impacted the game to a large extent. The role of VAR is simple yet complex; to intervene in between the play when the referees make a wrong decision or cannot make one. A specific scenario arises when they have to decide if a sliding tackle inside the box has resulted in a clean tackle or penalty for the opposition team. The technology is there to watch the moment at which tackle took place on repeat but the decisions are still made by humans and hence can be biased. I propose a CNN based foul detection which is theoretically based on the principle of the initial point of contact.

Data

Collecting the data has been a ponderous task, there are no open-source resources for the kind of data of any league. The only available sources are the video clips of the European matches and compilations on youtube of tackling and fouls. A small chunk of data is also acquired from the paper Soccer Event Detection Using Deep Learning.

image

Model Architecture

image

Results & Inferences

Results: Training Accuracy: 76.6% Validation Accuracy: 78%

image

image

Infrences

image

image

image

image

The above inference is a case where the model predicted the classes correctly. The focus has been on player postures and the initial contacts. In Figure 4, you can clearly see it takes into account both the players postures and initial point of contact. Figure 3, shows that the initial point of contact with the player as well the ball of the opposition player is taken into account for the decision making.

image

In Figure 5, the original image corresponds to a foul but is classified as a clean tackle, observe that the initial point of contact is not considered at all, some focus is on the postures but mainly on the green grass. This is pretty common in the images classified in the wrong classes. This issue can be resolved if more data is available for both classes and the quality of data improves.

Real-Time Inference Example can be seen in the article.

Future Work

The future work is improving the model by increasing the volume of the data as well as the variety of fouls. In this project, we have studied sliding tackles. Once a model with better accuracy is achieved, it may become the next advancement in football’s decision making.

The data can be used freely but if you do use it mention Aamir Ahmad Ansari in the citations or credits with link to this repository.

Owner
Aamir
Software Developer / AI and ML Expert
Aamir
An open-source project for applying deep learning to medical scenarios

Auto Vaidya An open source solution for creating end-end web app for employing the power of deep learning in various clinical scenarios like implant d

Smaranjit Ghose 18 May 29, 2022
Generating synthetic mobility data for a realistic population with RNNs to improve utility and privacy

lbs-data Motivation Location data is collected from the public by private firms via mobile devices. Can this data also be used to serve the public goo

Alex 11 Sep 22, 2022
Generating Images with Recurrent Adversarial Networks

Generating Images with Recurrent Adversarial Networks Python (Theano) implementation of Generating Images with Recurrent Adversarial Networks code pro

Daniel Jiwoong Im 121 Sep 08, 2022
Asterisk is a framework to generate high-quality training datasets at scale

Asterisk is a framework to generate high-quality training datasets at scale

Mona Nashaat 44 Apr 25, 2022
Adversarial vulnerability of powerful near out-of-distribution detection

Adversarial vulnerability of powerful near out-of-distribution detection by Stanislav Fort In this repository we're collecting replications for the ke

Stanislav Fort 9 Aug 30, 2022
Dynamic Token Normalization Improves Vision Transformers

Dynamic Token Normalization Improves Vision Transformers This is the PyTorch implementation of the paper Dynamic Token Normalization Improves Vision T

Wenqi Shao 20 Oct 09, 2022
Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax

Clockwork VAEs in JAX/Flax Implementation of experiments in the paper Clockwork Variational Autoencoders (project website) using JAX and Flax, ported

Julius Kunze 26 Oct 05, 2022
FairMOT for Multi-Class MOT using YOLOX as Detector

FairMOT-X Project Overview FairMOT-X is a multi-class multi object tracker, which has been tailored for training on the BDD100K MOT Dataset. It makes

Jonathan Tan 33 Dec 28, 2022
Implementation of Squeezenet in pytorch, pretrained models on Cifar 10 data to come

Pytorch Squeeznet Pytorch implementation of Squeezenet model as described in https://arxiv.org/abs/1602.07360 on cifar-10 Data. The definition of Sque

gaurav pathak 86 Oct 28, 2022
Auto Seg-Loss: Searching Metric Surrogates for Semantic Segmentation

Auto-Seg-Loss By Hao Li, Chenxin Tao, Xizhou Zhu, Xiaogang Wang, Gao Huang, Jifeng Dai This is the official implementation of the ICLR 2021 paper Auto

61 Dec 21, 2022
EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation

EdiBERT, a generative model for image editing EdiBERT is a generative model based on a bi-directional transformer, suited for image manipulation. The

16 Dec 07, 2022
Dataset Condensation with Contrastive Signals

Dataset Condensation with Contrastive Signals This repository is the official implementation of Dataset Condensation with Contrastive Signals (DCC). T

3 May 19, 2022
Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, Leyffer, Kirches, and Manns.

Prototypical python implementation of the trust-region algorithm presented in Sequential Linearization Method for Bound-Constrained Mathematical Programs with Complementarity Constraints by Larson, L

3 Dec 02, 2022
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
Fully Convolutional DenseNet (A.K.A 100 layer tiramisu) for semantic segmentation of images implemented in TensorFlow.

FC-DenseNet-Tensorflow This is a re-implementation of the 100 layer tiramisu, technically a fully convolutional DenseNet, in TensorFlow (Tiramisu). Th

Hasnain Raza 121 Oct 12, 2022
Finetuning Pipeline

KLUE Baseline Korean(한국어) KLUE-baseline contains the baseline code for the Korean Language Understanding Evaluation (KLUE) benchmark. See our paper fo

74 Dec 13, 2022
Python inverse kinematics for your robot model based on Pinocchio.

Python inverse kinematics for your robot model based on Pinocchio.

Stéphane Caron 50 Dec 22, 2022
Normalizing Flows with a resampled base distribution

Resampling Base Distributions of Normalizing Flows Normalizing flows are a popular class of models for approximating probability distributions. Howeve

Vincent Stimper 24 Nov 03, 2022
Defending graph neural networks against adversarial attacks (NeurIPS 2020)

GNNGuard: Defending Graph Neural Networks against Adversarial Attacks Authors: Xiang Zhang ( Zitnik Lab @ Harvard 44 Dec 07, 2022

HGCAE Pytorch implementation. CVPR2021 accepted.

Hyperbolic Graph Convolutional Auto-Encoders Accepted to CVPR2021 🎉 Official PyTorch code of Unsupervised Hyperbolic Representation Learning via Mess

Junho Cho 37 Nov 13, 2022