Agent-based model simulator for air quality and pandemic risk assessment in architectural spaces

Overview

Agent-based model simulation for air quality and pandemic risk assessment in architectural spaces.

PyPI Status PyPI Version License Actions Top Language Github Issues

User Guide

archABM is a fast and open source agent-based modelling framework that simulates complex human-building-interaction patterns and estimates indoor air quality across an entire building, while taking into account potential airborne virus concentrations.


Disclaimer: archABM is an evolving research tool designed to familiarize the interested user with factors influencing the potential indoor airborne transmission of viruses (such as SARS-CoV-2) and the generation of carbon-dioxide (CO2) indoors. Calculations of virus and CO2 levels within ArchABM are based on recently published aerosol models [1,2], which however have not been validated in the context of agent-based modeling (ABM) yet. We note that uncertainty in and intrinsic variability of model parameters as well as underlying assumptions concerning model parameters may lead to errors regarding the simulated results. Use of archABM is the sole responsibility of the user. It is being made available without guarantee or warranty of any kind. The authors do not accept any liability from its use.

[1] Peng, Zhe, and Jose L. Jimenez. "Exhaled CO2 as a COVID-19 infection risk proxy for different indoor environments and activities." Environmental Science & Technology Letters 8.5 (2021): 392-397.

[2] Lelieveld, Jos, et al. "Model calculations of aerosol transmission and infection risk of COVID-19 in indoor environments." International journal of environmental research and public health 17.21 (2020): 8114.


Installation

As the compiled archABM package is hosted on the Python Package Index (PyPI) you can easily install it with pip. To install archABM, run this command in your terminal of choice:

$ pip install archABM

or, alternatively:

$ python -m pip install archABM

If you want to get archABM's latest version, you can refer to the repository hosted at github:

python -m pip install https://github.com/Vicomtech/ArchABM/archive/main.zip

Getting Started

Use the following template to run a simulation with archABM:

from archABM.engine import Engine
import json
import pandas as pd

# Read config data from JSON
def read_json(file_path):
    with open(str(file_path)) as json_file:
        result = json.load(json_file)
    return result

config_data = read_json("config.json")
# WARNING - for further processing ->
# config_data["options"]["return_output"] = True

# Create ArchABM simulation engine
simulation = Engine(config_data)

# Run simulation
results = simulation.run()

# Create dataframes based on the results
df_people = pd.DataFrame(results["results"]["people"])
df_places = pd.DataFrame(results["results"]["places"])

Developers can also use the command-line interface with the main.py file from the source code repository.

$ python main.py config.json

To run an example, use the config.json found at the data directory of archABM repository.

Check the --help option to get more information about the optional parameters:

$ python main.py --help
Usage: main.py [OPTIONS] CONFIG_FILE

  ArchABM simulation helper

Arguments:
  CONFIG_FILE  The name of the configuration file  [required]

Options:
  -i, --interactive     Interactive CLI mode  [default: False]
  -l, --save-log        Save events logs  [default: False]
  -c, --save-config     Save configuration file  [default: True]
  -t, --save-csv        Export results to csv format  [default: True]
  -j, --save-json       Export results to json format  [default: False]
  -o, --return-output   Return results dictionary  [default: False]
  --install-completion  Install completion for the current shell.
  --show-completion     Show completion for the current shell, to copy it or
                        customize the installation.

  --help                Show this message and exit.

Inputs

In order to run a simulation, information about the event types, people, places, and the aerosol model must be provided to the ArchABM framework.

Events
Attribute Description Type
name Event name string
schedule When an event is permitted to happen, in minutes list of tuples
duration Event duration lower and upper bounds, in minutes integer,integer
number of repetitions Number of repetitions lower and upper bounds integer,integer
mask efficiency Mask efficiency during an event [0-1] float
collective Event is invoked by one person but involves many boolean
allow Whether such event is allowed in the simulation boolean
Places
Attribute Description Type
name Place name string
activity Activity or event occurring at that place string
department Department name string
building Building name string
area Room floor area in square meters float
height Room height in meters. float
capacity Room people capacity. integer
height Room height in meters. float
ventilation Passive ventilation in hours-1 float
recirculated_flow_rate Active ventilation in cubic meters per hour float
allow Whether such place is allowed in the simulation boolean
People
Attribute Description Type
department Department name string
building Building name string
num_people Number of people integer
Aerosol Model
Attribute Description Type
pressure Ambient pressure in atm float
temperature Ambient temperature in Celsius degrees float
CO2_background Background CO2 concentration in ppm float
decay_rate Decay rate of virus in hours-1 float
deposition_rate Deposition to surfaces in hours-1 float
hepa_flow_rate Hepa filter flow rate in cubic meters per hour float
filter_efficiency Air conditioning filter efficiency float
ducts_removal Air ducts removal loss float
other_removal Extraordinary air removal float
fraction_immune Fraction of people immune to the virus float
breathing_rate Mean breathing flow rate in cubic meters per hour float
CO2_emission_person CO2 emission rate at 273K and 1atm float
quanta_exhalation Quanta exhalation rate in quanta per hour float
quanta_enhancement Quanta enhancement due to variants float
people_with_masks Fraction of people using mask float
Options
Attribute Description Type
movement_buildings Allow people enter to other buildings boolean
movement_department Allow people enter to other departments boolean
number_runs Number of simulations runs to execute integer
save_log Save events logs boolean
save_config Save configuration file boolean
save_csv Export the results to csv format boolean
save_json Export the results to json format boolean
return_output Return a dictionary with the results boolean
directory Directory name to save results string
ratio_infected Ratio of infected to total number of people float
model Aerosol model to be used in the simulation string

Example config.json

config.json
{
    "events": [{
            "activity": "home",
            "schedule": [
                [0, 480],
                [1020, 1440]
            ],
            "repeat_min": 0,
            "repeat_max": null,
            "duration_min": 300,
            "duration_max": 360,
            "mask_efficiency": null,
            "collective": false,
            "shared": false,
            "allow": true
        },
        {
            "activity": "work",
            "schedule": [
                [480, 1020]
            ],
            "repeat_min": 0,
            "repeat_max": null,
            "duration_min": 30,
            "duration_max": 60,
            "mask_efficiency": 0.0,
            "collective": false,
            "shared": true,
            "allow": true
        },
        {
            "activity": "meeting",
            "schedule": [
                [540, 960]
            ],
            "repeat_min": 0,
            "repeat_max": 5,
            "duration_min": 20,
            "duration_max": 90,
            "mask_efficiency": 0.0,
            "collective": true,
            "shared": true,
            "allow": true
        },
        {
            "activity": "lunch",
            "schedule": [
                [780, 900]
            ],
            "repeat_min": 1,
            "repeat_max": 1,
            "duration_min": 20,
            "duration_max": 45,
            "mask_efficiency": 0.0,
            "collective": true,
            "shared": true,
            "allow": true
        },
        {
            "activity": "coffee",
            "schedule": [
                [600, 660],
                [900, 960]
            ],
            "repeat_min": 0,
            "repeat_max": 2,
            "duration_min": 5,
            "duration_max": 15,
            "mask_efficiency": 0.0,
            "collective": true,
            "shared": true,
            "allow": true
        },
        {
            "activity": "restroom",
            "schedule": [
                [480, 1020]
            ],
            "repeat_min": 0,
            "repeat_max": 4,
            "duration_min": 3,
            "duration_max": 6,
            "mask_efficiency": 0.0,
            "collective": false,
            "shared": true,
            "allow": true
        }
    ],
    "places": [{
            "name": "home",
            "activity": "home",
            "building": null,
            "department": null,
            "area": null,
            "height": null,
            "capacity": null,
            "ventilation": null,
            "recirculated_flow_rate": null,
            "allow": true
        },
        {
            "name": "open_office",
            "activity": "work",
            "building": "building1",
            "department": ["department1", "department2", "department3", "department4"],
            "area": 330.0,
            "height": 2.7,
            "capacity": 60,
            "ventilation": 1.5,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "it_office",
            "activity": "work",
            "building": "building1",
            "department": ["department4"],
            "area": 52.0,
            "height": 2.7,
            "capacity": 10,
            "ventilation": 1.5,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "chief_office_A",
            "activity": "work",
            "building": "building1",
            "department": ["department5", "department6", "department7"],
            "area": 21.0,
            "height": 2.7,
            "capacity": 5,
            "ventilation": 1.5,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "chief_office_B",
            "activity": "work",
            "building": "building1",
            "department": ["department5", "department6", "department7"],
            "area": 21.0,
            "height": 2.7,
            "capacity": 5,
            "ventilation": 1.5,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "chief_office_C",
            "activity": "work",
            "building": "building1",
            "department": ["department5", "department6", "department7"],
            "area": 24.0,
            "height": 2.7,
            "capacity": 5,
            "ventilation": 1.5,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "meeting_A",
            "activity": "meeting",
            "building": "building1",
            "department": ["department1", "department2", "department3", "department5", "department6", "department7"],
            "area": 16.0,
            "height": 2.7,
            "capacity": 6,
            "ventilation": 1.0,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "meeting_B",
            "activity": "meeting",
            "building": "building1",
            "department": ["department1", "department2", "department3", "department5", "department6", "department7"],
            "area": 16.0,
            "height": 2.7,
            "capacity": 6,
            "ventilation": 1.0,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "meeting_C",
            "activity": "meeting",
            "building": "building1",
            "department": ["department1", "department2", "department3", "department5", "department6", "department7"],
            "area": 11.0,
            "height": 2.7,
            "capacity": 4,
            "ventilation": 1.0,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "meeting_D",
            "activity": "meeting",
            "building": "building1",
            "department": null,
            "area": 66.0,
            "height": 2.7,
            "capacity": 24,
            "ventilation": 1.5,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "coffee_A",
            "activity": "coffee",
            "building": "building1",
            "department": null,
            "area": 25.0,
            "height": 2.7,
            "capacity": 10,
            "ventilation": 1.5,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "coffee_B",
            "activity": "coffee",
            "building": "building1",
            "department": null,
            "area": 55.0,
            "height": 2.7,
            "capacity": 20,
            "ventilation": 1.5,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "restroom_A",
            "activity": "restroom",
            "building": "building1",
            "department": null,
            "area": 20.0,
            "height": 2.7,
            "capacity": 4,
            "ventilation": 1.0,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "restroom_B",
            "activity": "restroom",
            "building": "building1",
            "department": ["department1", "department2", "department3", "department4", "department5", "department6"],
            "area": 20.0,
            "height": 2.7,
            "capacity": 4,
            "ventilation": 1.0,
            "recirculated_flow_rate": 0,
            "allow": true
        },
        {
            "name": "lunch",
            "activity": "lunch",
            "building": "building1",
            "department": null,
            "area": 150.0,
            "height": 2.7,
            "capacity": 60,
            "ventilation": 1.5,
            "recirculated_flow_rate": 0,
            "allow": true
        }
    ],
    "people": [{
            "department": "department1",
            "building": "building1",
            "num_people": 16
        },
        {
            "department": "department2",
            "building": "building1",
            "num_people": 16
        },
        {
            "department": "department3",
            "building": "building1",
            "num_people": 16
        },
        {
            "department": "department4",
            "building": "building1",
            "num_people": 7
        },
        {
            "department": "department5",
            "building": "building1",
            "num_people": 2
        },
        {
            "department": "department6",
            "building": "building1",
            "num_people": 2
        },
        {
            "department": "department7",
            "building": "building1",
            "num_people": 1
        }
    ],
    "options": {
        "movement_buildings": true,
        "movement_department": false,
        "number_runs": 1,
        "save_log": true,
        "save_config": true,
        "save_csv": false,
        "save_json": false,
        "return_output": false,
        "directory": null,
        "ratio_infected": 0.05,
        "model": "Colorado",
        "model_parameters": {
            "Colorado": {
                "pressure": 0.95,
                "temperature": 20,
                "CO2_background": 415,
                "decay_rate": 0.62,
                "deposition_rate": 0.3,
                "hepa_flow_rate": 0.0,
                "recirculated_flow_rate": 300,
                "filter_efficiency": 0.20,
                "ducts_removal": 0.10,
                "other_removal": 0.00,
                "fraction_immune": 0,
                "breathing_rate": 0.52,
                "CO2_emission_person": 0.005,
                "quanta_exhalation": 25,
                "quanta_enhancement": 1,
                "people_with_masks": 1.00
            }
        }
    }
}

Outputs

Simulation outputs are stored by default in the results directory. The subfolder with the results of an specific simulation have the date and time of the moment when it was launched as a name in %Y-%m-%d_%H-%M-%S-%f format.

By default, three files are saved after a simulation:

  • config.json stores a copy of the input configuration.
  • people.csv stores every person's state along time.
  • places.csv stores every places's state along time.

archABM offers the possibility of exporting the results in JSON and CSV format. To export in JSON format, use the --save-json parameter when running archABM. By default, the --save-csv parameter is set to true.

Alternatively, archABM can also be configured to yield more detailed information. The app.log file saves the log of the actions and events occurred during the simulation. To export this file, use the --save-log parameter when running archABM.


Citing archABM

If you use ArchABM in your work or project, please cite the following article, published in Building and Environment (DOI...): [Full REF]

@article{
}
Owner
Vicomtech
Applied Research in Visual Computing & Interaction and Artificial Inteligence - Official Github Account - Member of Basque Research & Technology Alliance, BRTA
Vicomtech
RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining

RMNA: A Neighbor Aggregation-Based Knowledge Graph Representation Learning Model Using Rule Mining Our code is based on Learning Attention-based Embed

宋朝都 4 Aug 07, 2022
Easy and Efficient Object Detector

EOD Easy and Efficient Object Detector EOD (Easy and Efficient Object Detection) is a general object detection model production framework. It aim on p

381 Jan 01, 2023
Lightweight mmm - Lightweight (Bayesian) Media Mix Model

Lightweight (Bayesian) Media Mix Model This is not an official Google product. L

Google 342 Jan 03, 2023
PyTorch implementation of image classification models for CIFAR-10/CIFAR-100/MNIST/FashionMNIST/Kuzushiji-MNIST/ImageNet

PyTorch Image Classification Following papers are implemented using PyTorch. ResNet (1512.03385) ResNet-preact (1603.05027) WRN (1605.07146) DenseNet

1.2k Jan 04, 2023
SCNet: Learning Semantic Correspondence

SCNet Code Region matching code is contributed by Kai Han ([email protected]). Dense

Kai Han 34 Sep 06, 2022
【Arxiv】Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution

SANet Exploring Separable Attention for Multi-Contrast MR Image Super-Resolution Dependencies numpy==1.18.5 scikit_image==0.16.2 torchvision==0.8.1 to

36 Jan 05, 2023
HugsVision is a easy to use huggingface wrapper for state-of-the-art computer vision

HugsVision is an open-source and easy to use all-in-one huggingface wrapper for computer vision. The goal is to create a fast, flexible and user-frien

Labrak Yanis 166 Nov 27, 2022
Capture all information throughout your model's development in a reproducible way and tie results directly to the model code!

Rubicon Purpose Rubicon is a data science tool that captures and stores model training and execution information, like parameters and outcomes, in a r

Capital One 97 Jan 03, 2023
DilatedNet in Keras for image segmentation

Keras implementation of DilatedNet for semantic segmentation A native Keras implementation of semantic segmentation according to Multi-Scale Context A

303 Mar 15, 2022
A pytorch implementation of Paper "Improved Training of Wasserstein GANs"

WGAN-GP An pytorch implementation of Paper "Improved Training of Wasserstein GANs". Prerequisites Python, NumPy, SciPy, Matplotlib A recent NVIDIA GPU

Marvin Cao 1.4k Dec 14, 2022
Pytorch implementation of our method for regularizing nerual radiance fields for few-shot neural volume rendering.

InfoNeRF: Ray Entropy Minimization for Few-Shot Neural Volume Rendering Pytorch implementation of our method for regularizing nerual radiance fields f

106 Jan 06, 2023
Proof-Of-Concept Piano-Drums Music AI Model/Implementation

Rock Piano "When all is one and one is all, that's what it is to be a rock and not to roll." ---Led Zeppelin, "Stairway To Heaven" Proof-Of-Concept Pi

Alex 4 Nov 28, 2021
Accelerated deep learning R&D

Accelerated deep learning R&D PyTorch framework for Deep Learning research and development. It focuses on reproducibility, rapid experimentation, and

Catalyst-Team 3.1k Jan 06, 2023
The repository includes the code for training cell counting applications. (Keras + Tensorflow)

cell_counting_v2 The repository includes the code for training cell counting applications. (Keras + Tensorflow) Dataset can be downloaded here : http:

Weidi 113 Oct 06, 2022
PuppetGAN - Cross-Domain Feature Disentanglement and Manipulation just got way better! 🚀

Better Cross-Domain Feature Disentanglement and Manipulation with Improved PuppetGAN Quite cool... Right? Introduction This repo contains a TensorFlow

Giorgos Karantonis 5 Aug 25, 2022
The MATH Dataset

Measuring Mathematical Problem Solving With the MATH Dataset This is the repository for Measuring Mathematical Problem Solving With the MATH Dataset b

Dan Hendrycks 267 Dec 26, 2022
Codes for CVPR2021 paper "PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization"

PWCLO-Net: Deep LiDAR Odometry in 3D Point Clouds Using Hierarchical Embedding Mask Optimization (CVPR 2021) This is the official implementation of PW

Intelligent Robotics and Machine Vision Lab 42 Dec 18, 2022
Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic

Pytorch Implementation of Zero-Shot Image-to-Text Generation for Visual-Semantic Arithmetic [Paper] [Colab is coming soon] Approach Example Usage To r

170 Jan 03, 2023
Create and implement a deep learning library from scratch.

In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The Proj

Rishabh Bali 22 Aug 23, 2022
Python implementation of Bayesian optimization over permutation spaces.

Bayesian Optimization over Permutation Spaces This repository contains the source code and the resources related to the paper "Bayesian Optimization o

Aryan Deshwal 9 Dec 23, 2022