HugsVision is a easy to use huggingface wrapper for state-of-the-art computer vision

Overview

drawing

PyPI version GitHub Issues Contributions welcome License: MIT Downloads

HugsVision is an open-source and easy to use all-in-one huggingface wrapper for computer vision.

The goal is to create a fast, flexible and user-friendly toolkit that can be used to easily develop state-of-the-art computer vision technologies, including systems for Image Classification, Semantic Segmentation, Object Detection, Image Generation, Denoising and much more.

⚠️ HugsVision is currently in beta. ⚠️

Quick installation

HugsVision is constantly evolving. New features, tutorials, and documentation will appear over time. HugsVision can be installed via PyPI to rapidly use the standard library. Moreover, a local installation can be used by those users than want to run experiments and modify/customize the toolkit. HugsVision supports both CPU and GPU computations. For most recipes, however, a GPU is necessary during training. Please note that CUDA must be properly installed to use GPUs.

Anaconda setup

conda create --name HugsVision python=3.6 -y
conda activate HugsVision

More information on managing environments with Anaconda can be found in the conda cheat sheet.

Install via PyPI

Once you have created your Python environment (Python 3.6+) you can simply type:

pip install hugsvision

Install with GitHub

Once you have created your Python environment (Python 3.6+) you can simply type:

git clone https://github.com/qanastek/HugsVision.git
cd HugsVision
pip install -r requirements.txt
pip install --editable .

Any modification made to the hugsvision package will be automatically interpreted as we installed it with the --editable flag.

Example Usage

Let's train a binary classifier that can distinguish people with or without Pneumothorax thanks to their radiography.

Steps:

  1. Move to the recipe directory cd recipes/pneumothorax/binary_classification/
  2. Download the dataset here ~779 MB.
  3. Transform the dataset into a directory based one, thanks to the process.py script.
  4. Train the model: python train_example_vit.py --imgs="./pneumothorax_binary_classification_task_data/" --name="pneumo_model_vit" --epochs=1
  5. Rename <MODEL_PATH>/config.json to <MODEL_PATH>/preprocessor_config.json in my case, the model is situated at the output path like ./out/MYVITMODEL/1_2021-08-10-00-53-58/model/
  6. Make a prediction: python predict.py --img="42.png" --path="./out/MYVITMODEL/1_2021-08-10-00-53-58/model/"

Models recipes

You can find all the currently available models or tasks under the recipes/ folder.

Training a Transformer Image Classifier to help radiologists detect Pneumothorax cases: A demonstration of how to train a Image Classifier Transformer model that can distinguish people with or without Pneumothorax thanks to their radiography with HugsVision.
Training a End-To-End Object Detection with Transformers to detect blood cells: A demonstration of how to train a E2E Object Detection Transformer model which can detect and identify blood cells with HugsVision.
Training a Transformer Image Classifier to help endoscopists: A demonstration of how to train a Image Classifier Transformer model that can help endoscopists to automate detection of various anatomical landmarks, phatological findings or endoscopic procedures in the gastrointestinal tract with HugsVision.
Training and using a TorchVision Image Classifier in 5 min to identify skin cancer: A fast and easy tutorial to train a TorchVision Image Classifier that can help dermatologist in their identification procedures Melanoma cases with HugsVision and HAM10000 dataset.

HuggingFace Spaces

You can try some of the models or tasks on HuggingFace thanks to theirs amazing spaces :

Model architectures

All the model checkpoints provided by 🤗 Transformers and compatible with our tasks can be seamlessly integrated from the huggingface.co model hub where they are uploaded directly by users and organizations.

Before starting implementing, please check if your model has an implementation in PyTorch by refering to this table.

🤗 Transformers currently provides the following architectures for Computer Vision:

  1. ViT (from Google Research, Brain Team) released with the paper An Image is Worth 16x16 Words: Transformers for Image Recognition at Scale, by Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, Neil Houlsby.
  2. DeiT (from Facebook AI and Sorbonne University) released with the paper Training data-efficient image transformers & distillation through attention by Hugo Touvron, Matthieu Cord, Matthijs Douze, Francisco Massa, Alexandre Sablayrolles, Hervé Jégou.
  3. BEiT (from Microsoft Research) released with the paper BEIT: BERT Pre-Training of Image Transformers by Hangbo Bao, Li Dong and Furu Wei.
  4. DETR (from Facebook AI) released with the paper End-to-End Object Detection with Transformers by Nicolas Carion, Francisco Massa, Gabriel Synnaeve, Nicolas Usunier, Alexander Kirillov and Sergey Zagoruyko.

Build PyPi package

Build: python setup.py sdist bdist_wheel

Upload: twine upload dist/*

Citation

If you want to cite the tool you can use this:

@misc{HugsVision,
  title={HugsVision},
  author={Yanis Labrak},
  publisher={GitHub},
  journal={GitHub repository},
  howpublished={\url{https://github.com/qanastek/HugsVision}},
  year={2021}
}
Owner
Labrak Yanis
👨🏻‍🎓 Student in Master of Science in Computer Science, Avignon University 🇫🇷 🏛 Research Scientist - Machine Learning in Healthcare
Labrak Yanis
Adversarial Texture Optimization from RGB-D Scans (CVPR 2020).

AdversarialTexture Adversarial Texture Optimization from RGB-D Scans (CVPR 2020). Scanning Data Download Please refer to data directory for details. B

Jingwei Huang 153 Nov 28, 2022
SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning

Datasets | Website | Raw Data | OpenReview SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning Christopher

67 Dec 17, 2022
Newt - a Gaussian process library in JAX.

Newt __ \/_ (' \`\ _\, \ \\/ /`\/\ \\ \ \\

AaltoML 0 Nov 02, 2021
This is a repository for a No-Code object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operating systems.

OpenVINO Inference API This is a repository for an object detection inference API using the OpenVINO. It's supported on both Windows and Linux Operati

BMW TechOffice MUNICH 68 Nov 24, 2022
Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation.

DuoRec Code for WSDM 2022 paper, Contrastive Learning for Representation Degeneration Problem in Sequential Recommendation. Usage Download datasets fr

Qrh 46 Dec 19, 2022
Py4fi2nd - Jupyter Notebooks and code for Python for Finance (2nd ed., O'Reilly) by Yves Hilpisch.

Python for Finance (2nd ed., O'Reilly) This repository provides all Python codes and Jupyter Notebooks of the book Python for Finance -- Mastering Dat

Yves Hilpisch 1k Jan 05, 2023
Image Processing, Image Smoothing, Edge Detection and Transforms

opevcvdl-hw1 This project uses openCV and Qt to achieve the requirements. Version Python 3.7 opencv-contrib-python 3.4.2.17 Matplotlib 3.1.1 pyqt5 5.1

Kenny Cheng 3 Aug 17, 2022
sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code

sequitur sequitur is a library that lets you create and train an autoencoder for sequential data in just two lines of code. It implements three differ

Jonathan Shobrook 305 Dec 21, 2022
An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics.

Sketch Simulator An architecture that makes any doodle realistic, in any specified style, using VQGAN, CLIP and some basic embedding arithmetics. See

12 Dec 18, 2022
A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021)

A-SDF: Learning Disentangled Signed Distance Functions for Articulated Shape Representation (ICCV 2021) This repository contains the official implemen

81 Dec 14, 2022
DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Dimensionality Reduction + Clustering + Unsupervised Score Metrics Introduction

11 Nov 15, 2022
OCTIS: Comparing Topic Models is Simple! A python package to optimize and evaluate topic models (accepted at EACL2021 demo track)

OCTIS : Optimizing and Comparing Topic Models is Simple! OCTIS (Optimizing and Comparing Topic models Is Simple) aims at training, analyzing and compa

MIND 478 Jan 01, 2023
Directed Greybox Fuzzing with AFL

AFLGo: Directed Greybox Fuzzing AFLGo is an extension of American Fuzzy Lop (AFL). Given a set of target locations (e.g., folder/file.c:582), AFLGo ge

380 Nov 24, 2022
Label-Free Model Evaluation with Semi-Structured Dataset Representations

Label-Free Model Evaluation with Semi-Structured Dataset Representations Prerequisites This code uses the following libraries Python 3.7 NumPy PyTorch

8 Oct 06, 2022
Unimodal Face Classification with Multimodal Training

Unimodal Face Classification with Multimodal Training This is a PyTorch implementation of the following paper: Unimodal Face Classification with Multi

Wenbin Teng 3 Jul 06, 2022
Chatbot in 200 lines of code using TensorLayer

Seq2Seq Chatbot This is a 200 lines implementation of Twitter/Cornell-Movie Chatbot, please read the following references before you read the code: Pr

TensorLayer Community 820 Dec 17, 2022
Reference implementation of code generation projects from Facebook AI Research. General toolkit to apply machine learning to code, from dataset creation to model training and evaluation. Comes with pretrained models.

This repository is a toolkit to do machine learning for programming languages. It implements tokenization, dataset preprocessing, model training and m

Facebook Research 408 Jan 01, 2023
Code for ICLR 2021 Paper, "Anytime Sampling for Autoregressive Models via Ordered Autoencoding"

Anytime Autoregressive Model Anytime Sampling for Autoregressive Models via Ordered Autoencoding , ICLR 21 Yilun Xu, Yang Song, Sahaj Gara, Linyuan Go

Yilun Xu 22 Sep 08, 2022
Deep Learning for Time Series Forecasting.

nixtlats:Deep Learning for Time Series Forecasting [nikstla] (noun, nahuatl) Period of time. State-of-the-art time series forecasting for pytorch. Nix

Nixtla 5 Dec 06, 2022
Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations

Imitating Deep Learning Dynamics via Locally Elastic Stochastic Differential Equations This repo contains official code for the NeurIPS 2021 paper Imi

Jiayao Zhang 2 Oct 18, 2021