DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Overview

Dimensionality Reduction + Clustering + Unsupervised Score Metrics

  1. Introduction
  2. Installation
  3. Usage
  4. Hyperparameters matters
  5. BayesSearch example

1. Introduction

DimReductionClustering is a sklearn estimator allowing to reduce the dimension of your data and then to apply an unsupervised clustering algorithm. The quality of the cluster can be done according to different metrics. The steps of the pipeline are the following:

  • Perform a dimension reduction of the data using UMAP
  • Numerically find the best epsilon parameter for DBSCAN
  • Perform a density based clustering methods : DBSCAN
  • Estimate cluster quality using silhouette score or DBCV

2. Installation

Use the package manager pip to install DimReductionClustering like below. Rerun this command to check for and install updates .

!pip install umap-learn
!pip install git+https://github.com/christopherjenness/DBCV.git

!pip install git+https://github.com/MathieuCayssol/DimReductionClustering.git

3. Usage

Example on mnist data.

  • Import the data
from sklearn.model_selection import train_test_split
from keras.datasets import mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1]*x_train.shape[1]))
X, X_test, Y, Y_test = train_test_split(x_train, y_train, stratify=y_train, test_size=0.9)
  • Instanciation + fit the model (same interface as a sklearn estimators)
model = DimReductionClustering(n_components=2, min_dist=0.000001, score_metric='silhouette', knn_topk=8, min_pts=4).fit(X)

Return the epsilon using elbow method :

  • Show the 2D plot :
model.display_plotly()

  • Get the score (Silhouette coefficient here)
model.score()

4. Hyperparameters matters

4.1 UMAP (dim reduction)

  • n_neighbors (global/local tradeoff) (default:15 ; 2-1/4 of data)

    → low value (glue small chain, more local)

    → high value (glue big chain, more global)

  • min_dist (0 to 0.99) the minimum distance apart that points are allowed to be in the low dimensional representation. This means that low values of min_dist will result in clumpier embeddings. This can be useful if you are interested in clustering, or in finer topological structure. Larger values of min_dist will prevent UMAP from packing points together and will focus on the preservation of the broad topological structure instead.

  • n_components low dimensional space. 2 or 3

  • metric (’euclidian’ by default). For NLP, good idea to choose ‘cosine’ as infrequent/frequent words will have different magnitude.

4.2 DBSCAN (clustering)

  • min_pts MinPts ≥ 3. Basic rule : = 2 * Dimension (4 for 2D and 6 for 3D). Higher for noisy data.

  • Epsilon The maximum distance between two samples for one to be considered as in the neighborhood of the other. k-distance graph with k nearest neighbor. Sort result by descending order. Find elbow using orthogonal projection on a line between first and last point of the graph. y-coordinate of max(d((x,y),Proj(x,y))) is the optimal epsilon. Click here to know more about elbow method

! There is no Epsilon hyperparameters in the implementation, only k-th neighbor for KNN.

  • knn_topk k-th Nearest Neighbors. Between 3 and 20.

4.3 Score metric

5. BayesSearch example

!pip install scikit-optimize

from skopt.space import Integer
from skopt.space import Real
from skopt.space import Categorical
from skopt.utils import use_named_args
from skopt import BayesSearchCV

search_space = list()
#UMAP Hyperparameters
search_space.append(Integer(5, 200, name='n_neighbors', prior='uniform'))
search_space.append(Real(0.0000001, 0.2, name='min_dist', prior='uniform'))
#Search epsilon with KNN Hyperparameters
search_space.append(Integer(3, 20, name='knn_topk', prior='uniform'))
#DBSCAN Hyperparameters
search_space.append(Integer(4, 15, name='min_pts', prior='uniform'))


params = {search_space[i].name : search_space[i] for i in range((len(search_space)))}

train_indices = [i for i in range(X.shape[0])]  # indices for training
test_indices = [i for i in range(X.shape[0])]  # indices for testing

cv = [(train_indices, test_indices)]

clf = BayesSearchCV(estimator=DimReductionClustering(), search_spaces=params, n_jobs=-1, cv=cv)

clf.fit(X)

clf.best_params_

clf.best_score_
OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages

OCR-Streamlit-App OCR Streamlit App is used to extract text from images using python's easyocr, pytorch and streamlit packages OCR app gets an image a

Siva Prakash 5 Apr 05, 2022
This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset.

FACT This repo provides a demo for the CVPR 2021 paper "A Fourier-based Framework for Domain Generalization" on the PACS dataset. To cite, please use:

105 Dec 17, 2022
Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning

Here is deepparse. Deepparse is a state-of-the-art library for parsing multinational street addresses using deep learning. Use deepparse to Use the pr

GRAAL/GRAIL 192 Dec 20, 2022
SpinalNet: Deep Neural Network with Gradual Input

SpinalNet: Deep Neural Network with Gradual Input This repository contains scripts for training different variations of the SpinalNet and its counterp

H M Dipu Kabir 142 Dec 30, 2022
Dataset para entrenamiento de yoloV3 para 4 clases

Deteccion de objetos en video Este repo basado en el proyecto PyTorch YOLOv3 para correr detección de objetos sobre video. Construí sobre este proyect

1 Nov 01, 2021
Malmo Collaborative AI Challenge - Team Pig Catcher

The Malmo Collaborative AI Challenge - Team Pig Catcher Approach The challenge involves 2 agents who can either cooperate or defect. The optimal polic

Kai Arulkumaran 66 Jun 29, 2022
Official implementation of "Robust channel-wise illumination estimation"

This repository provides the official implementation of "Robust channel-wise illumination estimation." accepted in BMVC (2021).

Firas Laakom 4 Nov 08, 2022
Official repository for "Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring".

RNN-MBP Deep Recurrent Neural Network with Multi-scale Bi-directional Propagation for Video Deblurring (AAAI-2022) by Chao Zhu, Hang Dong, Jinshan Pan

SIV-LAB 22 Aug 31, 2022
Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation

Context Decoupling Augmentation for Weakly Supervised Semantic Segmentation The code of: Context Decoupling Augmentation for Weakly Supervised Semanti

54 Dec 12, 2022
ENet: A Deep Neural Network Architecture for Real-Time Semantic Segmentation

ENet in Caffe Execution times and hardware requirements Network 1024x512 1280x720 Parameters Model size (fp32) ENet 20.4 ms 32.9 ms 0.36 M 1.5 MB SegN

Timo Sämann 561 Jan 04, 2023
Misc YOLOL scripts for use in the Starbase space sandbox videogame

starbase-misc Misc YOLOL scripts for use in the Starbase space sandbox videogame. Each directory contains standalone YOLOL scripts. They don't really

4 Oct 17, 2021
Alphabetical Letter Recognition

DecisionTrees-Image-Classification Alphabetical Letter Recognition In these demo we are using "Decision Trees" Our database is composed by Learning Im

Mohammed Firass 4 Nov 30, 2021
A simple log parser and summariser for IIS web server logs

IISLogFileParser A basic parser tool for IIS Logs which summarises findings from the log file. Inspired by the Gist https://gist.github.com/wh13371/e7

2 Mar 26, 2022
Pytorch implementation of DeePSiM

Pytorch implementation of DeePSiM

1 Nov 05, 2021
The repository contains source code and models to use PixelNet architecture used for various pixel-level tasks. More details can be accessed at .

PixelNet: Representation of the pixels, by the pixels, and for the pixels. We explore design principles for general pixel-level prediction problems, f

Aayush Bansal 196 Aug 10, 2022
Official implementation of the Neurips 2021 paper Searching Parameterized AP Loss for Object Detection.

Parameterized AP Loss By Chenxin Tao, Zizhang Li, Xizhou Zhu, Gao Huang, Yong Liu, Jifeng Dai This is the official implementation of the Neurips 2021

46 Jul 06, 2022
Differentiable scientific computing library

xitorch: differentiable scientific computing library xitorch is a PyTorch-based library of differentiable functions and functionals that can be widely

98 Dec 26, 2022
The full training script for Enformer (Tensorflow Sonnet) on TPU clusters

Enformer TPU training script (wip) The full training script for Enformer (Tensorflow Sonnet) on TPU clusters, in an effort to migrate the model to pyt

Phil Wang 10 Oct 19, 2022
Predicting future trajectories of people in cameras of novel scenarios and views.

Pedestrian Trajectory Prediction Predicting future trajectories of pedestrians in cameras of novel scenarios and views. This repository contains the c

8 Sep 03, 2022
My implementation of Image Inpainting - A deep learning Inpainting model

Image Inpainting What is Image Inpainting Image inpainting is a restorative process that allows for the fixing or removal of unwanted parts within ima

Joshua V Evans 1 Dec 12, 2021