DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Overview

Dimensionality Reduction + Clustering + Unsupervised Score Metrics

  1. Introduction
  2. Installation
  3. Usage
  4. Hyperparameters matters
  5. BayesSearch example

1. Introduction

DimReductionClustering is a sklearn estimator allowing to reduce the dimension of your data and then to apply an unsupervised clustering algorithm. The quality of the cluster can be done according to different metrics. The steps of the pipeline are the following:

  • Perform a dimension reduction of the data using UMAP
  • Numerically find the best epsilon parameter for DBSCAN
  • Perform a density based clustering methods : DBSCAN
  • Estimate cluster quality using silhouette score or DBCV

2. Installation

Use the package manager pip to install DimReductionClustering like below. Rerun this command to check for and install updates .

!pip install umap-learn
!pip install git+https://github.com/christopherjenness/DBCV.git

!pip install git+https://github.com/MathieuCayssol/DimReductionClustering.git

3. Usage

Example on mnist data.

  • Import the data
from sklearn.model_selection import train_test_split
from keras.datasets import mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1]*x_train.shape[1]))
X, X_test, Y, Y_test = train_test_split(x_train, y_train, stratify=y_train, test_size=0.9)
  • Instanciation + fit the model (same interface as a sklearn estimators)
model = DimReductionClustering(n_components=2, min_dist=0.000001, score_metric='silhouette', knn_topk=8, min_pts=4).fit(X)

Return the epsilon using elbow method :

  • Show the 2D plot :
model.display_plotly()

  • Get the score (Silhouette coefficient here)
model.score()

4. Hyperparameters matters

4.1 UMAP (dim reduction)

  • n_neighbors (global/local tradeoff) (default:15 ; 2-1/4 of data)

    → low value (glue small chain, more local)

    → high value (glue big chain, more global)

  • min_dist (0 to 0.99) the minimum distance apart that points are allowed to be in the low dimensional representation. This means that low values of min_dist will result in clumpier embeddings. This can be useful if you are interested in clustering, or in finer topological structure. Larger values of min_dist will prevent UMAP from packing points together and will focus on the preservation of the broad topological structure instead.

  • n_components low dimensional space. 2 or 3

  • metric (’euclidian’ by default). For NLP, good idea to choose ‘cosine’ as infrequent/frequent words will have different magnitude.

4.2 DBSCAN (clustering)

  • min_pts MinPts ≥ 3. Basic rule : = 2 * Dimension (4 for 2D and 6 for 3D). Higher for noisy data.

  • Epsilon The maximum distance between two samples for one to be considered as in the neighborhood of the other. k-distance graph with k nearest neighbor. Sort result by descending order. Find elbow using orthogonal projection on a line between first and last point of the graph. y-coordinate of max(d((x,y),Proj(x,y))) is the optimal epsilon. Click here to know more about elbow method

! There is no Epsilon hyperparameters in the implementation, only k-th neighbor for KNN.

  • knn_topk k-th Nearest Neighbors. Between 3 and 20.

4.3 Score metric

5. BayesSearch example

!pip install scikit-optimize

from skopt.space import Integer
from skopt.space import Real
from skopt.space import Categorical
from skopt.utils import use_named_args
from skopt import BayesSearchCV

search_space = list()
#UMAP Hyperparameters
search_space.append(Integer(5, 200, name='n_neighbors', prior='uniform'))
search_space.append(Real(0.0000001, 0.2, name='min_dist', prior='uniform'))
#Search epsilon with KNN Hyperparameters
search_space.append(Integer(3, 20, name='knn_topk', prior='uniform'))
#DBSCAN Hyperparameters
search_space.append(Integer(4, 15, name='min_pts', prior='uniform'))


params = {search_space[i].name : search_space[i] for i in range((len(search_space)))}

train_indices = [i for i in range(X.shape[0])]  # indices for training
test_indices = [i for i in range(X.shape[0])]  # indices for testing

cv = [(train_indices, test_indices)]

clf = BayesSearchCV(estimator=DimReductionClustering(), search_spaces=params, n_jobs=-1, cv=cv)

clf.fit(X)

clf.best_params_

clf.best_score_
Populating 3D Scenes by Learning Human-Scene Interaction https://posa.is.tue.mpg.de/

Populating 3D Scenes by Learning Human-Scene Interaction [Project Page] [Paper] License Software Copyright License for non-commercial scientific resea

Mohamed Hassan 81 Nov 08, 2022
We present a framework for training multi-modal deep learning models on unlabelled video data by forcing the network to learn invariances to transformations applied to both the audio and video streams.

Multi-Modal Self-Supervision using GDT and StiCa This is an official pytorch implementation of papers: Multi-modal Self-Supervision from Generalized D

Facebook Research 42 Dec 09, 2022
DVG-Face: Dual Variational Generation for Heterogeneous Face Recognition, TPAMI 2021

DVG-Face: Dual Variational Generation for HFR This repo is a PyTorch implementation of DVG-Face: Dual Variational Generation for Heterogeneous Face Re

52 Dec 30, 2022
Code release for NeRF (Neural Radiance Fields)

NeRF: Neural Radiance Fields Project Page | Video | Paper | Data Tensorflow implementation of optimizing a neural representation for a single scene an

6.5k Jan 01, 2023
Project repo for the paper SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition

SILT: Self-supervised Lighting Transfer Using Implicit Image Decomposition (BMVC 2021) Project repo for the paper SILT: Self-supervised Lighting Trans

6 Dec 04, 2022
This code is part of the reproducibility package for the SANER 2022 paper "Generating Clarifying Questions for Query Refinement in Source Code Search".

Clarifying Questions for Query Refinement in Source Code Search This code is part of the reproducibility package for the SANER 2022 paper "Generating

Zachary Eberhart 0 Dec 04, 2021
Privacy-Preserving Machine Learning (PPML) Tutorial Presented at PyConDE 2022

PPML: Machine Learning on Data you cannot see Repository for the tutorial on Privacy-Preserving Machine Learning (PPML) presented at PyConDE 2022 Abst

Valerio Maggio 10 Aug 16, 2022
Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018)

CDAN Code release for "Conditional Adversarial Domain Adaptation" (NIPS 2018) New version: https://github.com/thuml/Transfer-Learning-Library Dataset

THUML @ Tsinghua University 363 Dec 20, 2022
TAP: Text-Aware Pre-training for Text-VQA and Text-Caption, CVPR 2021 (Oral)

TAP: Text-Aware Pre-training TAP: Text-Aware Pre-training for Text-VQA and Text-Caption by Zhengyuan Yang, Yijuan Lu, Jianfeng Wang, Xi Yin, Dinei Flo

Microsoft 61 Nov 14, 2022
[ICCV 2021] Excavating the Potential Capacity of Self-Supervised Monocular Depth Estimation

EPCDepth EPCDepth is a self-supervised monocular depth estimation model, whose supervision is coming from the other image in a stereo pair. Details ar

Rui Peng 110 Dec 23, 2022
Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis"

StrengthNet Implementation of "StrengthNet: Deep Learning-based Emotion Strength Assessment for Emotional Speech Synthesis" https://arxiv.org/abs/2110

RuiLiu 65 Dec 20, 2022
Bounding Wasserstein distance with couplings

BoundWasserstein These scripts reproduce the results of the article Bounding Wasserstein distance with couplings by Niloy Biswas and Lester Mackey. ar

Niloy Biswas 1 Jan 11, 2022
Repository containing the PhD Thesis "Formal Verification of Deep Reinforcement Learning Agents"

Getting Started This repository contains the code used for the following publications: Probabilistic Guarantees for Safe Deep Reinforcement Learning (

Edoardo Bacci 5 Aug 31, 2022
Invert and perturb GAN images for test-time ensembling

GAN Ensembling Project Page | Paper | Bibtex Ensembling with Deep Generative Views. Lucy Chai, Jun-Yan Zhu, Eli Shechtman, Phillip Isola, Richard Zhan

Lucy Chai 93 Dec 08, 2022
yolox_backbone is a deep-learning library and is a collection of YOLOX Backbone models.

YOLOX-Backbone yolox-backbone is a deep-learning library and is a collection of YOLOX backbone models. Install pip install yolox-backbone Load a Pret

Yonghye Kwon 21 Dec 28, 2022
Repository relating to the CVPR21 paper TimeLens: Event-based Video Frame Interpolation

TimeLens: Event-based Video Frame Interpolation This repository is about the High Speed Event and RGB (HS-ERGB) dataset, used in the 2021 CVPR paper T

Robotics and Perception Group 544 Dec 19, 2022
(AAAI2022) Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Semantic Segmentation

SM-PPM This is a Pytorch implementation of our paper "Style Mixing and Patchwise Prototypical Matching for One-Shot Unsupervised Domain Adaptive Seman

W-zx-Y 10 Dec 07, 2022
EfficientNetV2-with-TPU - Cifar-10 case study

EfficientNetV2-with-TPU EfficientNet EfficientNetV2 adalah jenis jaringan saraf convolutional yang memiliki kecepatan pelatihan lebih cepat dan efisie

Sultan syach 1 Dec 28, 2021
这是一个yolo3-tf2的源码,可以用于训练自己的模型。

YOLOV3:You Only Look Once目标检测模型在Tensorflow2当中的实现 目录 性能情况 Performance 所需环境 Environment 文件下载 Download 训练步骤 How2train 预测步骤 How2predict 评估步骤 How2eval 参考资料

Bubbliiiing 68 Dec 21, 2022
SiT: Self-supervised vIsion Transformer

This repository contains the official PyTorch self-supervised pretraining, finetuning, and evaluation codes for SiT (Self-supervised image Transformer).

Sara Ahmed 275 Dec 28, 2022