DimReductionClustering - Dimensionality Reduction + Clustering + Unsupervised Score Metrics

Overview

Dimensionality Reduction + Clustering + Unsupervised Score Metrics

  1. Introduction
  2. Installation
  3. Usage
  4. Hyperparameters matters
  5. BayesSearch example

1. Introduction

DimReductionClustering is a sklearn estimator allowing to reduce the dimension of your data and then to apply an unsupervised clustering algorithm. The quality of the cluster can be done according to different metrics. The steps of the pipeline are the following:

  • Perform a dimension reduction of the data using UMAP
  • Numerically find the best epsilon parameter for DBSCAN
  • Perform a density based clustering methods : DBSCAN
  • Estimate cluster quality using silhouette score or DBCV

2. Installation

Use the package manager pip to install DimReductionClustering like below. Rerun this command to check for and install updates .

!pip install umap-learn
!pip install git+https://github.com/christopherjenness/DBCV.git

!pip install git+https://github.com/MathieuCayssol/DimReductionClustering.git

3. Usage

Example on mnist data.

  • Import the data
from sklearn.model_selection import train_test_split
from keras.datasets import mnist

(x_train, y_train), (x_test, y_test) = mnist.load_data()
x_train = np.reshape(x_train, (x_train.shape[0], x_train.shape[1]*x_train.shape[1]))
X, X_test, Y, Y_test = train_test_split(x_train, y_train, stratify=y_train, test_size=0.9)
  • Instanciation + fit the model (same interface as a sklearn estimators)
model = DimReductionClustering(n_components=2, min_dist=0.000001, score_metric='silhouette', knn_topk=8, min_pts=4).fit(X)

Return the epsilon using elbow method :

  • Show the 2D plot :
model.display_plotly()

  • Get the score (Silhouette coefficient here)
model.score()

4. Hyperparameters matters

4.1 UMAP (dim reduction)

  • n_neighbors (global/local tradeoff) (default:15 ; 2-1/4 of data)

    → low value (glue small chain, more local)

    → high value (glue big chain, more global)

  • min_dist (0 to 0.99) the minimum distance apart that points are allowed to be in the low dimensional representation. This means that low values of min_dist will result in clumpier embeddings. This can be useful if you are interested in clustering, or in finer topological structure. Larger values of min_dist will prevent UMAP from packing points together and will focus on the preservation of the broad topological structure instead.

  • n_components low dimensional space. 2 or 3

  • metric (’euclidian’ by default). For NLP, good idea to choose ‘cosine’ as infrequent/frequent words will have different magnitude.

4.2 DBSCAN (clustering)

  • min_pts MinPts ≥ 3. Basic rule : = 2 * Dimension (4 for 2D and 6 for 3D). Higher for noisy data.

  • Epsilon The maximum distance between two samples for one to be considered as in the neighborhood of the other. k-distance graph with k nearest neighbor. Sort result by descending order. Find elbow using orthogonal projection on a line between first and last point of the graph. y-coordinate of max(d((x,y),Proj(x,y))) is the optimal epsilon. Click here to know more about elbow method

! There is no Epsilon hyperparameters in the implementation, only k-th neighbor for KNN.

  • knn_topk k-th Nearest Neighbors. Between 3 and 20.

4.3 Score metric

5. BayesSearch example

!pip install scikit-optimize

from skopt.space import Integer
from skopt.space import Real
from skopt.space import Categorical
from skopt.utils import use_named_args
from skopt import BayesSearchCV

search_space = list()
#UMAP Hyperparameters
search_space.append(Integer(5, 200, name='n_neighbors', prior='uniform'))
search_space.append(Real(0.0000001, 0.2, name='min_dist', prior='uniform'))
#Search epsilon with KNN Hyperparameters
search_space.append(Integer(3, 20, name='knn_topk', prior='uniform'))
#DBSCAN Hyperparameters
search_space.append(Integer(4, 15, name='min_pts', prior='uniform'))


params = {search_space[i].name : search_space[i] for i in range((len(search_space)))}

train_indices = [i for i in range(X.shape[0])]  # indices for training
test_indices = [i for i in range(X.shape[0])]  # indices for testing

cv = [(train_indices, test_indices)]

clf = BayesSearchCV(estimator=DimReductionClustering(), search_spaces=params, n_jobs=-1, cv=cv)

clf.fit(X)

clf.best_params_

clf.best_score_
Very Deep Convolutional Networks for Large-Scale Image Recognition

pytorch-vgg Some scripts to convert the VGG-16 and VGG-19 models [1] from Caffe to PyTorch. The converted models can be used with the PyTorch model zo

Justin Johnson 217 Dec 05, 2022
Code for the paper "TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks"

TadGAN: Time Series Anomaly Detection Using Generative Adversarial Networks This is a Python3 / Pytorch implementation of TadGAN paper. The associated

Arun 92 Dec 03, 2022
Official implementation of Self-supervised Image-to-text and Text-to-image Synthesis

Self-supervised Image-to-text and Text-to-image Synthesis This is the official implementation of Self-supervised Image-to-text and Text-to-image Synth

6 Jul 31, 2022
Pytorch Geometric Tutorials

Pytorch Geometric Tutorials

Antonio Longa 648 Jan 08, 2023
Invariant Causal Prediction for Block MDPs

MISA Abstract Generalization across environments is critical to the successful application of reinforcement learning algorithms to real-world challeng

Meta Research 41 Sep 17, 2022
Code repository for the paper Computer Vision User Entity Behavior Analytics

Computer Vision User Entity Behavior Analytics Code repository for "Computer Vision User Entity Behavior Analytics" Code Description dataset.csv As di

Sameer Khanna 2 Aug 20, 2022
Segcache: a memory-efficient and scalable in-memory key-value cache for small objects

Segcache: a memory-efficient and scalable in-memory key-value cache for small objects This repo contains the code of Segcache described in the followi

TheSys Group @ CMU CS 78 Jan 07, 2023
My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs (GNN, GAT, GraphSAGE, GCN)

machine-learning-with-graphs My solutions for Stanford University course CS224W: Machine Learning with Graphs Fall 2021 colabs Course materials can be

Marko Njegomir 7 Dec 14, 2022
Image Captioning using CNN and Transformers

Image-Captioning Keras/Tensorflow Image Captioning application using CNN and Transformer as encoder/decoder. In particulary, the architecture consists

24 Dec 28, 2022
YOLOv5 + ROS2 object detection package

YOLOv5-ROS YOLOv5 + ROS2 object detection package This program changes the input of detect.py (ultralytics/yolov5) to sensor_msgs/Image of ROS2. Requi

Ar-Ray 23 Dec 19, 2022
Code for Dual Contrastive Learning for Unsupervised Image-to-Image Translation, NTIRE, CVPRW 2021.

arXiv Dual Contrastive Learning Adversarial Generative Networks (DCLGAN) We provide our PyTorch implementation of DCLGAN, which is a simple yet powerf

119 Dec 04, 2022
Implementation of the SUMO (Slim U-Net trained on MODA) model

SUMO - Slim U-Net trained on MODA Implementation of the SUMO (Slim U-Net trained on MODA) model as described in: TODO: add reference to paper once ava

6 Nov 19, 2022
ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS.

ONNX Runtime Web demo is an interactive demo portal showing real use cases running ONNX Runtime Web in VueJS. It currently supports four examples for you to quickly experience the power of ONNX Runti

Microsoft 58 Dec 18, 2022
Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning

Beta Shapley: a Unified and Noise-reduced Data Valuation Framework for Machine Learning This repository provides an implementation of the paper Beta S

Yongchan Kwon 28 Nov 10, 2022
Landmarks Recogntion Web application using Streamlit.

Landmark Recognition Web-App using Streamlit Watch Tutorial for this project Source Trained model landmarks_classifier_asia_V1/1 is taken from the Ten

Kushal Bhavsar 5 Dec 12, 2022
Fast and scalable uncertainty quantification for neural molecular property prediction, accelerated optimization, and guided virtual screening.

Evidential Deep Learning for Guided Molecular Property Prediction and Discovery Ava Soleimany*, Alexander Amini*, Samuel Goldman*, Daniela Rus, Sangee

Alexander Amini 75 Dec 15, 2022
A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities

MPT A Multi-modal Perception Tracker (MPT) for speaker tracking using both audio and visual modalities. Implementation for our AAAI 2022 paper: Multi-

yidiLi 4 May 08, 2022
Koopman operator identification library in Python

pykoop pykoop is a Koopman operator identification library written in Python. It allows the user to specify Koopman lifting functions and regressors i

DECAR Systems Group 34 Jan 04, 2023
Complete U-net Implementation with keras

U Net Lowered with Keras Complete U-net Implementation with keras Original Paper Link : https://arxiv.org/abs/1505.04597 Special Implementations : The

Sagnik Roy 14 Oct 10, 2022
PyTorch implementation DRO: Deep Recurrent Optimizer for Structure-from-Motion

DRO: Deep Recurrent Optimizer for Structure-from-Motion This is the official PyTorch implementation code for DRO-sfm. For technical details, please re

Alibaba Cloud 56 Dec 12, 2022