Code for Dual Contrastive Learning for Unsupervised Image-to-Image Translation, NTIRE, CVPRW 2021.

Overview

arXiv

Dual Contrastive Learning Adversarial Generative Networks (DCLGAN)

We provide our PyTorch implementation of DCLGAN, which is a simple yet powerful model for unsupervised Image-to-image translation. Compared to CycleGAN, DCLGAN performs geometry changes with more realistic results. Compared to CUT, DCLGAN is usually more robust and achieves better performance. A viriant, SimDCL (Similarity DCLGAN) also avoids mode collapse using a new similarity loss.

DCLGAN is a general model performing all kinds of Image-to-Image translation tasks. It achieves SOTA performances in most tasks that we have tested.

Dual Contrastive Learning for Unsupervised Image-to-Image Translation
Junlin Han, Mehrdad Shoeiby, Lars Petersson, Mohammad Ali Armin
DATA61-CSIRO and Australian National University
In NTIRE, CVPRW 2021.

Our pipeline is quite straightforward. The main idea is a dual setting with two encoders to capture the variability in two distinctive domains.

Example Results

Unpaired Image-to-Image Translation

Qualitative results:

Quantitative results:

More visual results:

Prerequisites

Python 3.6 or above.

For packages, see requirements.txt.

Getting started

  • Clone this repo:
git clone https://github.com/JunlinHan/DCLGAN.git
  • Install PyTorch 1.4 or above and other dependencies (e.g., torchvision, visdom, dominate, gputil).

    For pip users, please type the command pip install -r requirements.txt.

    For Conda users, you can create a new Conda environment using conda env create -f environment.yml.

DCLGAN and SimDCL Training and Test

  • Download the grumpifycat dataset
bash ./datasets/download_cut_dataset.sh grumpifycat

The dataset is downloaded and unzipped at ./datasets/grumpifycat/.

  • To view training results and loss plots, run python -m visdom.server and click the URL http://localhost:8097.

Train the DCL model:

python train.py --dataroot ./datasets/grumpifycat --name grumpycat_DCL 

Or train the SimDCL model:

python train.py --dataroot ./datasets/grumpifycat --name grumpycat_SimDCL --model simdcl

We also support CUT:

python train.py --dataroot ./datasets/grumpifycat --name grumpycat_cut --model cut

and fastCUT:

python train.py --dataroot ./datasets/grumpifycat --name grumpycat_fastcut --model fastcut

and CycleGAN:

python train.py --dataroot ./datasets/grumpifycat --name grumpycat_cyclegan --model cycle_gan

The checkpoints will be stored at ./checkpoints/grumpycat_DCL/.

  • Test the DCL model:
python test.py --dataroot ./datasets/grumpifycat --name grumpycat_DCL

The test results will be saved to an html file here: ./results/grumpycat_DCL/latest_test/.

DCLGAN, SimDCL, CUT and CycleGAN

DCLGAN is a more robust unsupervised image-to-image translation model compared to previous models. Our performance is usually better than CUT & CycleGAN.

SIMDCL is a different version, it was designed to solve mode collpase. We recommend using it for small-scale, unbalanced dataset.

Datasets

Download CUT/CycleGAN/pix2pix datasets and learn how to create your own datasets.

Or download it here: https://people.eecs.berkeley.edu/~taesung_park/CycleGAN/datasets/.

Apply a pre-trained DCL model and evaluate

We provide our pre-trained DCLGAN models for:

Cat <-> Dog : https://drive.google.com/file/d/1-0SICLeoySDG0q2k1yeJEI2QJvEL-DRG/view?usp=sharing

Horse <-> Zebra: https://drive.google.com/file/d/16oPsXaP3RgGargJS0JO1K-vWBz42n5lf/view?usp=sharing

CityScapes: https://drive.google.com/file/d/1ZiLAhYG647ipaVXyZdBCsGeiHgBmME6X/view?usp=sharing

Download the pre-tained model, unzip it and put it inside ./checkpoints (You may need to create checkpoints folder by yourself if you didn't run the training code).

Example usage: Download the dataset of Horse2Zebra and test the model using:

python test.py --dataroot ./datasets/horse2zebra --name horse2zebra_dcl

For FID score, use pytorch-fid.

Test the FID for Horse-> Zebra:

python -m pytorch_fid ./results/horse2zebra_dcl/test_latest/images/fake_B ./results/horse2zebra_dcl/test_latest/images/real_B

and Zorse-> Hebra:

python -m pytorch_fid ./results/horse2zebra_dcl/test_latest/images/fake_A ./results/horse2zebra_dcl/test_latest/images/real_A

Citation

If you use our code or our results, please consider citing our paper. Thanks in advance!

@inproceedings{han2021dcl,
  title={Dual Contrastive Learning for Unsupervised Image-to-Image Translation},
  author={Junlin Han and Mehrdad Shoeiby and Lars Petersson and Mohammad Ali Armin},
  booktitle={Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops},
  year={2021}
}

If you use something included in CUT, you may also CUT.

@inproceedings{park2020cut,
  title={Contrastive Learning for Unpaired Image-to-Image Translation},
  author={Taesung Park and Alexei A. Efros and Richard Zhang and Jun-Yan Zhu},
  booktitle={European Conference on Computer Vision},
  year={2020}
}

Contact

[email protected] or [email protected]

Acknowledgments

Our code is developed based on pytorch-CycleGAN-and-pix2pix and CUT. We thank the awesome work provided by CycleGAN and CUT. We thank pytorch-fid for FID computation. Great thanks to the anonymous reviewers, from both the main CVPR conference and NTIRE. They provided invaluable feedbacks and suggestions.

Owner
Computer vision.
A simple approach to emable dense segmentation with ViT.

Vision Transformer Segmentation Network This implementation of ViT in pytorch uses a super simple and straight-forward way of generating an output of

HReynaud 5 Jan 03, 2023
The Incredible PyTorch: a curated list of tutorials, papers, projects, communities and more relating to PyTorch.

This is a curated list of tutorials, projects, libraries, videos, papers, books and anything related to the incredible PyTorch. Feel free to make a pu

Ritchie Ng 9.2k Jan 02, 2023
SCAAML is a deep learning framwork dedicated to side-channel attacks run on top of TensorFlow 2.x.

SCAAML (Side Channel Attacks Assisted with Machine Learning) is a deep learning framwork dedicated to side-channel attacks. It is written in python and run on top of TensorFlow 2.x.

Google 69 Dec 21, 2022
A stable algorithm for GAN training

DRAGAN (Deep Regret Analytic Generative Adversarial Networks) Link to our paper - https://arxiv.org/abs/1705.07215 Pytorch implementation (thanks!) -

195 Oct 10, 2022
Pyramid addon for OpenAPI3 validation of requests and responses.

Validate Pyramid views against an OpenAPI 3.0 document Peace of Mind The reason this package exists is to give you peace of mind when providing a REST

Pylons Project 79 Dec 30, 2022
An implementation of the Contrast Predictive Coding (CPC) method to train audio features in an unsupervised fashion.

CPC_audio This code implements the Contrast Predictive Coding algorithm on audio data, as described in the paper Unsupervised Pretraining Transfers we

Meta Research 283 Dec 30, 2022
A Python Reconnection Tool for alt:V

altv-reconnect What? It invokes a reconnect in the altV Client Dev Console. You get to determine when your local client should reconnect when developi

8 Jun 30, 2022
This repository contains implementations and illustrative code to accompany DeepMind publications

DeepMind Research This repository contains implementations and illustrative code to accompany DeepMind publications. Along with publishing papers to a

DeepMind 11.3k Dec 31, 2022
Specification language for generating Generalized Linear Models (with or without mixed effects) from conceptual models

tisane Tisane: Authoring Statistical Models via Formal Reasoning from Conceptual and Data Relationships TL;DR: Analysts can use Tisane to author gener

Eunice Jun 11 Nov 15, 2022
An introduction to bioimage analysis - http://bioimagebook.github.io

Introduction to Bioimage Analysis This book tries explain the main ideas of image analysis in a practical and engaging way. It's written primarily for

Bioimage Book 20 Nov 28, 2022
Anonymous implementation of KSL

k-Step Latent (KSL) Implementation of k-Step Latent (KSL) in PyTorch. Representation Learning for Data-Efficient Reinforcement Learning [Paper] Code i

1 Nov 10, 2021
Optimizing synthesizer parameters using gradient approximation

Optimizing synthesizer parameters using gradient approximation NASH 2021 Hackathon! These are some experiments I conducted during NASH 2021, the Neura

Jordie Shier 10 Feb 10, 2022
Img-process-manual - Utilize Python Numpy and Matplotlib to realize OpenCV baisc image processing function

Img-process-manual - Opencv Library basic graphic processing algorithm coding reproduction based on Numpy and Matplotlib library

Jack_Shaw 2 Dec 12, 2022
Pathdreamer: A World Model for Indoor Navigation

Pathdreamer: A World Model for Indoor Navigation This repository hosts the open source code for Pathdreamer, to be presented at ICCV 2021. Paper | Pro

Google Research 122 Jan 04, 2023
The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution.

WSRGlow The official implementation of the Interspeech 2021 paper WSRGlow: A Glow-based Waveform Generative Model for Audio Super-Resolution. Audio sa

Kexun Zhang 96 Jan 03, 2023
Deep Semisupervised Multiview Learning With Increasing Views (IEEE TCYB 2021, PyTorch Code)

Deep Semisupervised Multiview Learning With Increasing Views (ISVN, IEEE TCYB) Peng Hu, Xi Peng, Hongyuan Zhu, Liangli Zhen, Jie Lin, Huaibai Yan, Dez

3 Nov 19, 2022
learning and feeling SLAM together with hands-on-experiments

modern-slam-tutorial-python Learning and feeling SLAM together with hands-on-experiments πŸ˜€ πŸ˜ƒ πŸ˜† Dependencies Most of the examples are based on GTSAM

Giseop Kim 59 Dec 22, 2022
[NeurIPS 2021] COCO-LM: Correcting and Contrasting Text Sequences for Language Model Pretraining

COCO-LM This repository contains the scripts for fine-tuning COCO-LM pretrained models on GLUE and SQuAD 2.0 benchmarks. Paper: COCO-LM: Correcting an

Microsoft 106 Dec 12, 2022
A Transformer-Based Feature Segmentation and Region Alignment Method For UAV-View Geo-Localization

University1652-Baseline [Paper] [Slide] [Explore Drone-view Data] [Explore Satellite-view Data] [Explore Street-view Data] [Video Sample] [中文介绍] This

Zhedong Zheng 335 Jan 06, 2023
Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022)

Retinal Vessel Segmentation with Pixel-wise Adaptive Filters (ISBI 2022) Introdu

anonymous 14 Oct 27, 2022