[ArXiv 2021] Data-Efficient Instance Generation from Instance Discrimination

Related tags

Deep Learninginsgen
Overview

InsGen - Data-Efficient Instance Generation from Instance Discrimination

image

Data-Efficient Instance Generation from Instance Discrimination
Ceyuan Yang, Yujun Shen, Yinghao Xu, Bolei Zhou
arXiv preprint arXiv: 2106.04566

[Paper] [Project Page]

In this work, we develop a novel data-efficient Instance Generation (InsGen) method for training GANs with limited data. With the instance discrimination as an auxiliary task, our method makes the best use of both real and fake images to train the discriminator. The discriminator in turn guides the generator to synthesize as many diverse images as possible. Experiments under different data regimes show that InsGen brings a substantial improvement over the baseline in terms of both image quality and image diversity, and outperforms previous data augmentation algorithms by a large margin.

Qualitative results

Here we provide some synthesized samples with different numbers of training images and correspoding FID. Full codebase and weights are coming soon. image

Inference

Here, all pretrained models can be downloaded from Google Drive:

Model FID Link
AFHQ512-CAT 2.60 link
AFHQ512-DOG 5.44 link
AFHQ512-WILD 1.77 link
Model FID Link
FFHQ256-2K 11.92 link
FFHQ256-10K 4.90 link
FFHQ256-140K 3.31 link

You can download one of them and put it under MODEL_ZOO directory, then synthesize images via

# Generate AFHQ512-CAT with truncation.
python generate.py --network=${MODEL_ZOO}/afhqcat.pkl \
                   --outdir=${TARGET_DIR} \
                   --trunc=0.7 \
                   --seeds=0-10

Training

This repository is built based on styleGAN2-ada-pytorch. Therefore, please prepare datasets first use dataset_tool.py. On top of Generative Adversarial Networks (GANs), we introduce contrastive loss into the training of discriminator, following MoCo. Concretely, the discriminator is used to extract features from images (either real or synthesized) and then trained with an auxiliary task by distinguishing every individual image.

As described in training/contrastive_head.py, we add two addition heads on top of the original discriminator. These two heads are used to project features extracted from real and fake data onto a unit ball respectively. More details can be found in paper. Note that InsGen can be easily applied to any GAN model by merely introducing two contrastive heads. According to MoCo, the feature extractor should be updated in a momentum manner. Here, in InsGen, the contrastive heads are updated in the forward() function, while the discriminator is updated in training/training_loop.py (see D_ema).

Please use the following command to start your own training:

python train.py --gpus=8 \
                --data=${DATA_PATH} \
                --cfg=paper256 \
                --outdir=training_example

In this example, the results are saved to a created director training_example. --cfg specifies the training configuration, which can be further customized with additional options:

  • --no_insgen disables InsGen, back to original StyleGAN2-ADA.
  • --rqs overrides the number of real image queue size. (default: 5% of the total number of training samples)
  • --fqs overrides the number of fake image queue size. More samples are beneficial, especially when the training samples are limited. (default: 5% of the total number of training samples)
  • --gamma overrides the R1 gamma (i.e., gradient penalty). As described in styleGAN2-ada-pytorch, training can be sensitive to this hyper-parameter. It would be better to try some different values. Here, we recommend using a smaller one than that in original StyleGAN2-ADA.

More functions would be supported after this projest is merged into our genforce. Please stay tuned!

License

This work is made available under the Nvidia Source Code License.

Acknowledgements

We thank Janne Hellsten and Tero Karras for the pytorch version codebase of their styleGAN2-ada-pytorch.

BibTeX

@article{yang2021insgen,
  title   = {Data-Efficient Instance Generation from Instance Discrimination},
  author  = {Yang, Ceyuan and Shen, Yujun and Xu, Yinghao and Zhou, Bolei},
  journal = {arXiv preprint arXiv:2106.04566},
  year    = {2021}
}
Owner
GenForce: May Generative Force Be with You
Research on Generative Modeling in Zhou Group
GenForce: May Generative Force Be with You
UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down. UpChecker - just run file and use project easy

UpChecker UpChecker is a simple opensource project to host it fast on your server and check is server up, view statistic, get messages if it is down.

Yan 4 Apr 07, 2022
Implements MLP-Mixer: An all-MLP Architecture for Vision.

MLP-Mixer-CIFAR10 This repository implements MLP-Mixer as proposed in MLP-Mixer: An all-MLP Architecture for Vision. The paper introduces an all MLP (

Sayak Paul 51 Jan 04, 2023
Direct design of biquad filter cascades with deep learning by sampling random polynomials.

IIRNet Direct design of biquad filter cascades with deep learning by sampling random polynomials. Usage git clone https://github.com/csteinmetz1/IIRNe

Christian J. Steinmetz 55 Nov 02, 2022
Providing the solutions for high-frequency trading (HFT) strategies using data science approaches (Machine Learning) on Full Orderbook Tick Data.

Modeling High-Frequency Limit Order Book Dynamics Using Machine Learning Framework to capture the dynamics of high-frequency limit order books. Overvi

Chang-Shu Chung 1.3k Jan 07, 2023
Bayesian regularization for functional graphical models.

BayesFGM Paper: Jiajing Niu, Andrew Brown. Bayesian regularization for functional graphical models. Requirements R version 3.6.3 and up Python 3.6 and

0 Oct 07, 2021
PyTorch implementation of Algorithm 1 of "On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models"

Code for On the Anatomy of MCMC-Based Maximum Likelihood Learning of Energy-Based Models This repository will reproduce the main results from our pape

Mitch Hill 32 Nov 25, 2022
JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces

JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces JAXMAPP is a JAX-based library for multi-agent path planning (MAPP) in c

OMRON SINIC X 24 Dec 28, 2022
ActNN: Reducing Training Memory Footprint via 2-Bit Activation Compressed Training

ActNN : Activation Compressed Training This is the official project repository for ActNN: Reducing Training Memory Footprint via 2-Bit Activation Comp

UC Berkeley RISE 178 Jan 05, 2023
A generalist algorithm for cell and nucleus segmentation.

Cellpose | A generalist algorithm for cell and nucleus segmentation. Cellpose was written by Carsen Stringer and Marius Pachitariu. To learn about Cel

MouseLand 733 Dec 29, 2022
PyTorchMemTracer - Depict GPU memory footprint during DNN training of PyTorch

A Memory Tracer For PyTorch OOM is a nightmare for PyTorch users. However, most

Jiarui Fang 9 Nov 14, 2022
This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

ICCV Workshop 2021 VTGAN This code is for our paper "VTGAN: Semi-supervised Retinal Image Synthesis and Disease Prediction using Vision Transformers"

Sharif Amit Kamran 25 Dec 08, 2022
Official code for 'Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Learning' [ICCV 2021]

RTFM This repo contains the Pytorch implementation of our paper: Weakly-supervised Video Anomaly Detection with Robust Temporal Feature Magnitude Lear

Yu Tian 242 Jan 08, 2023
NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

NEATEST: Evolving Neural Networks Through Augmenting Topologies with Evolution Strategy Training

Göktuğ Karakaşlı 16 Dec 05, 2022
A Fast and Accurate One-Stage Approach to Visual Grounding, ICCV 2019 (Oral)

One-Stage Visual Grounding ***** New: Our recent work on One-stage VG is available at ReSC.***** A Fast and Accurate One-Stage Approach to Visual Grou

Zhengyuan Yang 118 Dec 05, 2022
2D Human Pose estimation using transformers. Implementation in Pytorch

PE-former: Pose Estimation Transformer Vision transformer architectures perform very well for image classification tasks. Efforts to solve more challe

Panteleris Paschalis 23 Oct 17, 2022
Nicholas Lee 3 Jan 09, 2022
This is the pytorch code for the paper Curious Representation Learning for Embodied Intelligence.

Curious Representation Learning for Embodied Intelligence This is the pytorch code for the paper Curious Representation Learning for Embodied Intellig

19 Oct 19, 2022
The official implementation of Theme Transformer

Theme Transformer This is the official implementation of Theme Transformer. Checkout our demo and paper : Demo | arXiv Environment: using python versi

Ian Shih 85 Dec 08, 2022
Unsupervised Video Interpolation using Cycle Consistency

Unsupervised Video Interpolation using Cycle Consistency Project | Paper | YouTube Unsupervised Video Interpolation using Cycle Consistency Fitsum A.

NVIDIA Corporation 100 Nov 30, 2022
CondenseNet: Light weighted CNN for mobile devices

CondenseNets This repository contains the code (in PyTorch) for "CondenseNet: An Efficient DenseNet using Learned Group Convolutions" paper by Gao Hua

Shichen Liu 690 Nov 30, 2022