Animal Sound Classification (Cats Vrs Dogs Audio Sentiment Classification)

Overview

Animal Sound Classification (Cats Vrs Dogs Audio Sentiment Classification)

This is a simple audio classification api build to classify the sound of an audio, weather it is the cat or dog sound.

alt

Response

Given a .wav audio the model will classify what does the sound the audio belongs to either cat or dog.

{
  "predictions": {
    "class": "dog",
    "label": 1,
    "probability": 1.0
  },
  "success": true
}

Starting the server

To start server and start audio classification first you need to make sure you are in the server folder and run the following commands:

  1. creating a virtual environment
virtualenv venv && .\venv\Scripts\activate.bat
  1. installing packages
pip install -r requirements.txt
  1. Starting the server
python api/app.py

The server will start on a default port of 3001 and you will be able to make api request to the server to do audio classification.

Model Metrics

The following table shows all the metrics summary we get after training the model for few 15 epochs.

model name model description test accuracy validation accuracy train accuracy test loss validation loss train loss
cats-dogs-sound-cnn.pt audio sentiment classification for dogs and cats CNN. 90.7% 90.7% 93.5% 0.621 0.218 0.209

Classification report

The following is the classification report for the model on the test dataset.

# precision recall f1-score support
accuracy - - 90% 2305
macro avg 91% 90% 90% 2305
weighted avg 92% 89% 90% 2305

Confusion matrix

The following figure shows a confusion matrix for the classification model.

Audio Sentiment classification

If you hit the server at http://localhost:3001/classify you will be able to get the following expected response that is if the request method is POST and you provide the file expected by the server.

Expected Response

The expected response at http://localhost:3001/classify with a file audio of the right format will yield the following json response to the client.

{
  "predictions": {
    "class": "dog",
    "label": 1,
    "probability": 1.0
  },
  "success": true
}

Using curl

Make sure that you have the audio named cat.wav in the current folder that you are running your cmd otherwise you have to provide an absolute or relative path to the audio.

To make a curl POST request at http://localhost:3001/classify with the file cat.wav we run the following command.

# for cat
curl -X POST -F [email protected] http://127.0.0.1:3001/classify

# for dog
curl -X POST -F [email protected] http://127.0.0.1:3001/classify

Using Postman client

To make this request with postman we do it as follows:

  1. Change the request method to POST at http://127.0.0.1:3001/classify
  2. Click on form-data
  3. Select type to be file on the KEY attribute
  4. For the KEY type audio and select the audio you want to predict under value
  5. Click send

If everything went well you will get the following response depending on the face you have selected:

{
  "predictions": { "class": "dog", "label": 1, "probability": 1.0 },
  "success": true
}

Using JavaScript fetch api.

  1. First you need to get the input from html
  2. Create a formData object
  3. make a POST requests
res.json()) .then((data) => console.log(data));">
const input = document.getElementById("input").files[0];
let formData = new FormData();
formData.append("audio", input);
fetch("http://127.0.0.1:3001/classify", {
  method: "POST",
  body: formData,
})
  .then((res) => res.json())
  .then((data) => console.log(data));

If everything went well you will be able to get expected response.

{
  "predictions": { "class": "dog", "label": 1, "probability": 1.0 },
  "success": true
}

Notebooks

  • All notebooks for training and saving the models are found in the notebooks folder of this repository.
Owner
crispengari
ai || software development. (creator of initialiseur)
crispengari
Approaches to modeling terrain and maps in python

topography 🌎 Contains different approaches to modeling terrain and topographic-style maps in python Features Inverse Distance Weighting (IDW) A given

John Gutierrez 1 Aug 10, 2022
Official pytorch code for SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal

SSAT: A Symmetric Semantic-Aware Transformer Network for Makeup Transfer and Removal This is the official pytorch code for SSAT: A Symmetric Semantic-

ForeverPupil 57 Dec 13, 2022
EigenGAN Tensorflow, EigenGAN: Layer-Wise Eigen-Learning for GANs

Gender Bangs Body Side Pose (Yaw) Lighting Smile Face Shape Lipstick Color Painting Style Pose (Yaw) Pose (Pitch) Zoom & Rotate Flush & Eye Color Mout

Zhenliang He 321 Dec 01, 2022
Inflated i3d network with inception backbone, weights transfered from tensorflow

I3D models transfered from Tensorflow to PyTorch This repo contains several scripts that allow to transfer the weights from the tensorflow implementat

Yana 479 Dec 08, 2022
A general 3D Object Detection codebase in PyTorch.

Det3D is the first 3D Object Detection toolbox which provides off the box implementations of many 3D object detection algorithms such as PointPillars, SECOND, PIXOR, etc, as well as state-of-the-art

Benjin Zhu 1.4k Jan 05, 2023
TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision

TorchCV: A PyTorch-Based Framework for Deep Learning in Computer Vision @misc{you2019torchcv, author = {Ansheng You and Xiangtai Li and Zhen Zhu a

Donny You 2.2k Jan 06, 2023
[ICML 2022] The official implementation of Graph Stochastic Attention (GSAT).

Graph Stochastic Attention (GSAT) The official implementation of GSAT for our paper: Interpretable and Generalizable Graph Learning via Stochastic Att

85 Nov 27, 2022
Official repo for our 3DV 2021 paper "Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements".

Monocular 3D Reconstruction of Interacting Hands via Collision-Aware Factorized Refinements Yu Rong, Jingbo Wang, Ziwei Liu, Chen Change Loy Paper. Pr

Yu Rong 41 Dec 13, 2022
Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

Food Drinks and groceries Images Multi Lingual (FooDI-ML) dataset.

41 Jan 04, 2023
Unofficial Tensorflow-Keras implementation of Fastformer based on paper [Fastformer: Additive Attention Can Be All You Need](https://arxiv.org/abs/2108.09084).

Fastformer-Keras Unofficial Tensorflow-Keras implementation of Fastformer based on paper Fastformer: Additive Attention Can Be All You Need. Tensorflo

Yam Peleg 10 Jan 30, 2022
Dense Contrastive Learning (DenseCL) for self-supervised representation learning, CVPR 2021.

Dense Contrastive Learning for Self-Supervised Visual Pre-Training This project hosts the code for implementing the DenseCL algorithm for se

Xinlong Wang 491 Jan 03, 2023
PyTorch implementation of DCT fast weight RNNs

DCT based fast weights This repository contains the official code for the paper: Training and Generating Neural Networks in Compressed Weight Space. T

Kazuki Irie 4 Dec 24, 2022
Dynamic View Synthesis from Dynamic Monocular Video

Towards Robust Monocular Depth Estimation: Mixing Datasets for Zero-shot Cross-dataset Transfer This repository contains code to compute depth from a

Intelligent Systems Lab Org 2.3k Jan 01, 2023
The pytorch implementation of SOKD (BMVC2021).

Semi-Online Knowledge Distillation Implementations of SOKD. Requirements This repo was tested with Python 3.8, PyTorch 1.5.1, torchvision 0.6.1, CUDA

4 Dec 19, 2021
This is 2nd term discrete maths project done by UCU students that uses backtracking to solve various problems.

Backtracking Project Sponsors This is a project made by UCU students: Olha Liuba - crossword solver implementation Hanna Yershova - sudoku solver impl

Dasha 4 Oct 17, 2021
Artificial Intelligence playing minesweeper 🤖

AI playing Minesweeper ✨ Minesweeper is a single-player puzzle video game. The objective of the game is to clear a rectangular board containing hidden

Vaibhaw 8 Oct 17, 2022
Code for our paper "MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction" published at ICCV 2021.

MG-GAN: A Multi-Generator Model Preventing Out-of-Distribution Samples in Pedestrian Trajectory Prediction This repository contains the code for the p

Sven 30 Jan 05, 2023
JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces

JAXMAPP: JAX-based Library for Multi-Agent Path Planning in Continuous Spaces JAXMAPP is a JAX-based library for multi-agent path planning (MAPP) in c

OMRON SINIC X 24 Dec 28, 2022
Code for "NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video", CVPR 2021 oral

NeuralRecon: Real-Time Coherent 3D Reconstruction from Monocular Video Project Page | Paper NeuralRecon: Real-Time Coherent 3D Reconstruction from Mon

ZJU3DV 1.4k Dec 30, 2022
This is just a funny project that we want to see AutoEncoder (AE) can actually work to enhance the features we want

Funny_muscle_enhancer :) 1.Discription: This is just a funny project that we want to see AutoEncoder (AE) can actually work on the some features. We w

Jing-Yao Chen (Jacob) 8 Oct 01, 2022