Spectrum is an AI that uses machine learning to generate Rap song lyrics

Overview

Contributors Forks Stargazers Issues MIT License Open In Colab


Spectrum

Spectrum is an AI that uses deep learning to generate rap song lyrics.

View Demo
Report Bug
Request Feature
Open In Colab

About The Project

Spectrum is an AI that uses deep learning to generate rap song lyrics.

Built With

This project is built using Python, Tensorflow, and Flask.

Getting Started

Installation

# clone the repo
git clone https://github.com/YigitGunduc/Spectrum.git

# install requirements
pip install -r requirements.txt

Training

# navigate to the Spectrum/AI folder 
cd Spectrum/AI

# pass verbose, epochs, save_at arguments and run train.py 
python3 train.py -h, --help  --epochs EPOCHS --save_at SAVE_AT --verbose VERBOSE --rnn_neurons RNN_NEURONS
             --embed_dim EMBED_DIM --dropout DROPOUT --num_layers NUM_LAYERS --learning_rate LEARNING_RATE

All the arguments are optional if you leave them empty model will construct itself with the default params

Generating Text from Trained Model

Call eval.py from the command line with seed text as an argument

python3 eval.py --seed SEEDTEXT

or

from model import Generator

model = Generator()

model.load_weights('../models/model-5-epochs-256-neurons.h5')

generatedText = model.predict(start_seed=SEED, gen_size=1000)

print(generatedText)
  • If you have tweaked the model's parameters while training initialize the model with the parameters you trained

Running the Web-App Locally

# navigate to the Spectrum folder 
cd Spectrum

# run app.py
python3 app.py

# check out http://0.0.0.0:8080

API

spectrum has a free web API you can send request to it as shown below

import requests 

response = requests.get("https://spectrumapp.herokuapp.com/api/generate/SEEDTEXT")
#raw response
print(response.json())
#cleaned up response
print(response.json()["lyrics"])

Hyperparameters

epochs = 30 
batch size = 128
number of layers = 2(hidden) + 1(output)
number of RNN units = 256
dropout prob = 0.3
embedding dimensions = 64
optimizer = Adam
loss = sparse categorical crossentropy

These hyperparameters are the best that I can found but you have to be careful while dealing with the hyperparameters because this model can over or underfit quite easily and GRUs performs better than LSTMs

Info about model

>>> from model import Generator
>>> model = Generator()
>>> model.load_weights('../models/model-5-epochs-256-neurons.h5')
>>> model.summary()
Model: "sequential"
_________________________________________________________________
Layer (type)                 Output Shape              Param #   
=================================================================
embedding (Embedding)        (1, None, 64)             6400      
_________________________________________________________________
gru (GRU)                    (1, None, 256)            247296    
_________________________________________________________________
gru_1 (GRU)                  (1, None, 256)            394752    
_________________________________________________________________
dense (Dense)                (1, None, 100)            25700     
=================================================================
Total params: 674,148
Trainable params: 674,148
Non-trainable params: 0
_________________________________________________________________

>>> model.hyperparams()
Hyper Parameters
+--------------------------+
|rnn_neurons   |        256|
|embed_dim     |         64|
|learning_rate |     0.0001|
|dropout       |        0.3|
|num_layers    |          2|
+--------------------------+
>>>

Roadmap

See the open issues for a list of proposed features (and known issues).

Results

WARNING: There is some offensive language ahead, please stop reading here if you are a sensitive person. The texts below have been generated by Spectrum

Seed : today

Prediction : 

If that don't, yeah
Weint off the music
It's like a fired-enother foar fool straight for an exactly
Nigga why I id my Door Merican muthafucka

Ng answered by need for blazy hard
The family wish fans dishes rolled up
How better just wanna die
Match all about the moment in I glory
Fire is that attention is the flop and pipe those peokin' distriors
Bitch I been hard and I'm like the Scales me and we're going to school like all-off of the allegit to get the bitches
Yeah kinda too legit back into highin'
A year have it would plobably want

And we all bustin' the conscious in the cusfuckers won't ha
Quite warkie and it's blow, and what? I cannot love him,
Alugal Superman, and the revolution likes migh
I ain't still not I uest the neighborhoo
Powers all too bad show, you crite your bac
When I say way too fathom
If you wanna revell, money, where your face we'll blin
Pulf me very, yo, they pull out for taught nothin' off
I pass a with a nigga hang some, pleas
Fuck me now, it's a

======================================================================
Seed : hello

Prediction : 

hellow motherfucker
You wanna talk on the pockets on Harlotom
I'm legit some more than Volumon
Ridicalab knowledge is blessin' some of your honierby man
We just bust the Flud joke with shoulders on the Statue
Lecock it on everybody want your dices to speak
While she speak cents look back to Pops
He was a nigga when I got behind pictures any Lil Sanvanas
Used to in her lady yaught they never had a bitch
He'll break the jird little rappers kill your children is

I'm prayin' back to ready for that bitch just finished And mised to the gamr
Every eyes on and about that getting common
I'm going to attractived with its
I just went by the crowd get the promise to buy the money-a star big down
Can one sall 'em in me tryna get them days that's how I can break the top
Well, that's hug her hands he screaming like a fucking hip-hop but put a Blidze like rhymin'
Yeah I slack like a Job let your cops got a generres
These West of it today flamping this
Black Kuttle crib, said "Ju Conlie, hold up, fuck the

======================================================================
Seed : bestfriend

Prediction : 

bestfriend
Too much time we tonight
The way I know is a please have no self-back when I be for the fucking weed and a game
What the fuck we wanna be working on the streets make it like a stay down the world is from the head of the real brain
Chain don't come back to the grass
My dick is the one to tell you I'm the fuck
So see me we gon' be fans when you had to hear the window you come to the dick when a little cooleng and I was calling what the fuck is it good as the crown
And I'm representing you finally waitin' in your girl
This is the corner with my brother
I'm just a damn door and the real motherfuckers come got the point my shit is the money on the world

I get it then the conscious that's why I cripp
I might take my own shit so let me have a bad bitch
I'm just had and make the fuck is in the single of the window
I think I ain't got the world is all my gone be mine
They ain't like the half the best between my words
And I'm changing with the heads of the speech
Fuck a bunch of best of a fuck

Contributing

Contributions are what make the open source community such an amazing place to be learn, inspire, and create. Any contributions you make are greatly appreciated.

  1. Fork the Project
  2. Create your Feature Branch (git checkout -b feature/AmazingFeature)
  3. Commit your Changes (git commit -m 'Add some AmazingFeature')
  4. Push to the Branch (git push origin feature/AmazingFeature)
  5. Open a Pull Request

License

Distributed under the MIT License. See LICENSE for more information.

From the basics to slightly more interesting applications of Tensorflow

TensorFlow Tutorials You can find python source code under the python directory, and associated notebooks under notebooks. Source code Description 1 b

Parag K Mital 5.6k Jan 09, 2023
Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN

Single Image Super-Resolution (SISR) with SRResNet, EDSR and SRGAN Introduction Image super-resolution (SR) is the process of recovering high-resoluti

8 Apr 15, 2022
📝 Wrapper library for text generation / language models at char and word level with RNN in TensorFlow

tensorlm Generate Shakespeare poems with 4 lines of code. Installation tensorlm is written in / for Python 3.4+ and TensorFlow 1.1+ pip3 install tenso

Kilian Batzner 63 May 22, 2021
This is a simple face recognition mini project that was completed by a team of 3 members in 1 week's time

PeekingDuckling 1. Description This is an implementation of facial identification algorithm to detect and identify the faces of the 3 team members Cla

Eric Kwok 2 Jan 25, 2022
A PyTorch implementation of SlowFast based on ICCV 2019 paper "SlowFast Networks for Video Recognition"

SlowFast A PyTorch implementation of SlowFast based on ICCV 2019 paper SlowFast Networks for Video Recognition. Requirements Anaconda PyTorch conda in

Hao Ren 8 Dec 23, 2022
Interactive Visualization to empower domain experts to align ML model behaviors with their knowledge.

An interactive visualization system designed to helps domain experts responsibly edit Generalized Additive Models (GAMs). For more information, check

InterpretML 83 Jan 04, 2023
PyTorch implementation of EigenGAN

PyTorch Implementation of EigenGAN Train python train.py [image_folder_path] --name [experiment name] Test python test.py [ckpt path] --traverse FFH

62 Nov 12, 2022
Efficient 3D Backbone Network for Temporal Modeling

VoV3D is an efficient and effective 3D backbone network for temporal modeling implemented on top of PySlowFast. Diverse Temporal Aggregation and

102 Dec 06, 2022
TorchXRayVision: A library of chest X-ray datasets and models.

torchxrayvision A library for chest X-ray datasets and models. Including pre-trained models. ( 🎬 promo video about the project) Motivation: While the

Machine Learning and Medicine Lab 575 Jan 08, 2023
Code for NeurIPS 2021 paper: Invariant Causal Imitation Learning for Generalizable Policies

Invariant Causal Imitation Learning for Generalizable Policies Ioana Bica, Daniel Jarrett, Mihaela van der Schaar Neural Information Processing System

Ioana Bica 17 Dec 01, 2022
Evaluation suite for large-scale language models.

This repo contains code for running the evaluations and reproducing the results from the Jurassic-1 Technical Paper (see blog post), with current support for running the tasks through both the AI21 S

71 Dec 17, 2022
Official PyTorch implementation of MAAD: A Model and Dataset for Attended Awareness

MAAD: A Model for Attended Awareness in Driving Install // Datasets // Training // Experiments // Analysis // License Official PyTorch implementation

7 Oct 16, 2022
Materials for upcoming beginner-friendly PyTorch course (work in progress).

Learn PyTorch for Deep Learning (work in progress) I'd like to learn PyTorch. So I'm going to use this repo to: Add what I've learned. Teach others in

Daniel Bourke 2.3k Dec 29, 2022
Using a Seq2Seq RNN architecture via TensorFlow to predict future Bitcoin prices

Recurrent Bitcoin Network A Data Science Thesis Project About This repository contains the source code for implementing Bitcoin price prediciton using

Frizu 6 Sep 08, 2022
Python Actor concurrency library

Thespian Actor Library This library provides the framework of an Actor model for use by applications implementing Actors. Thespian Site with Documenta

Kevin Quick 177 Dec 11, 2022
The Few-Shot Bot: Prompt-Based Learning for Dialogue Systems

Few-Shot Bot: Prompt-Based Learning for Dialogue Systems This repository includes the dataset, experiments results, and code for the paper: Few-Shot B

Andrea Madotto 103 Dec 28, 2022
Codebase for the paper titled "Continual learning with local module selection"

This repository contains the codebase for the paper Continual Learning via Local Module Composition. Setting up the environemnt Create a new conda env

Oleksiy Ostapenko 20 Dec 10, 2022
From a body shape, infer the anatomic skeleton.

OSSO: Obtaining Skeletal Shape from Outside (CVPR 2022) This repository contains the official implementation of the skeleton inference from: OSSO: Obt

Marilyn Keller 166 Dec 28, 2022
Readings for "A Unified View of Relational Deep Learning for Polypharmacy Side Effect, Combination Therapy, and Drug-Drug Interaction Prediction."

Polypharmacy - DDI - Synergy Survey The Survey Paper This repository accompanies our survey paper A Unified View of Relational Deep Learning for Polyp

AstraZeneca 79 Jan 05, 2023
Lava-DL, but with PyTorch-Lightning flavour

Deep learning project seed Use this seed to start new deep learning / ML projects. Built in setup.py Built in requirements Examples with MNIST Badges

Sami BARCHID 4 Oct 31, 2022