PyTorch implementations of the paper: "Learning Independent Instance Maps for Crowd Localization"

Overview

IIM - Crowd Localization


This repo is the official implementation of paper: Learning Independent Instance Maps for Crowd Localization. The code is developed based on C3F. framework

Progress

  • Testing Code (2020.12.10)
  • Training Code
    • NWPU (2020.12.14)
    • JHU (2021.01.05)
    • UCF-QNRF (2020.12.30)
    • ShanghaiTech Part A/B (2020.12.29)
    • FDST (2020.12.30)
  • scale information for UCF-QNRF and ShanghaiTech Part A/B (2021.01.07)

Getting Started

Preparation

  • Prerequisites

    • Python 3.7
    • Pytorch 1.6: http://pytorch.org .
    • other libs in requirements.txt, run pip install -r requirements.txt.
  • Code

  • Datasets

    • Download NWPU-Crowd dataset from this link.

    • Unzip *zip files in turns and place images_part* into the same folder (Root/ProcessedData/NWPU/images).

    • Download the processing labels and val gt file from this link. Place them into Root/ProcessedData/NWPU/masks and Root/ProcessedData/NWPU, respectively.

    • If you want to reproduce the results on Shanghai Tech Part A/B , UCF-QNRF, and JHU datasets, you can follow the instructions in DATA.md to setup the datasets.

    • Finally, the folder tree is below:

   -- ProcessedData
   	|-- NWPU
   		|-- images
   		|   |-- 0001.jpg
   		|   |-- 0002.jpg
   		|   |-- ...
   		|   |-- 5109.jpg
   		|-- masks
   		|   |-- 0001.png
   		|   |-- 0002.png
   		|   |-- ...
   		|   |-- 3609.png
   		|-- train.txt
   		|-- val.txt
   		|-- test.txt
   		|-- val_gt_loc.txt
   -- PretrainedModels
     |-- hrnetv2_w48_imagenet_pretrained.pth
   -- IIM
     |-- datasets
     |-- misc
     |-- ...

Training

  • run python train.py.
  • run tensorboard --logdir=exp --port=6006.
  • The validtion records are shown as follows: val_curve
  • The sub images are the input image, GT, prediction map,localization result, and pixel-level threshold, respectively: val_curve

Tips: The training process takes ~50 hours on NWPU datasets with two TITAN RTX (48GB Memeory).

Testing and Submitting

  • Modify some key parameters in test.py:
    • netName.
    • model_path.
  • Run python test.py. Then the output file (*_*_test.txt) will be generated, which can be directly submitted to CrowdBenchmark

Visualization on the val set

  • Modify some key parameters in test.py:
    • test_list = 'val.txt'
    • netName.
    • model_path.
  • Run python test.py. Then the output file (*_*_val.txt) will be generated.
  • Modify some key parameters in vis4val.py:
    • pred_file.
  • Run python vis4val.py.

Performance

The results (F1, Pre., Rec. under the sigma_l) and pre-trained models on NWPU val set, UCF-QNRF, SHT A, SHT B, and FDST:

Method NWPU val UCF-QNRF SHT A
Paper: VGG+FPN [2,3] 77.0/80.2/74.1 68.8/78.2/61.5 72.5/72.6/72.5
This Repo's Reproduction: VGG+FPN [2,3] 77.1/82.5/72.3 67.8/75.7/61.5 71.6/75.9/67.8
Paper: HRNet [1] 80.2/84.1/76.6 72.0/79.3/65.9 73.9/79.8/68.7
This Repo's Reproduction: HRNet [1] 79.8/83.4/76.5 72.0/78.7/66.4 76.1/79.1/73.3
Method SHT B FDST JHU
Paper: VGG+FPN [2,3] 80.2/84.9/76.0 93.1/92.7/93.5 -
This Repo's Reproduction: VGG+FPN [2,3] 81.7/88.5/75.9 93.9/94.7/93.1 61.8/73.2/53.5
Paper: HRNet [1] 86.2/90.7/82.1 95.5/95.3/95.8 62.5/74.0/54.2
This Repo's Reproduction: HRNet [1] 86.0/91.5/81.0 95.7/96.9 /94.4 64.0/73.3/56.8

References

  1. Deep High-Resolution Representation Learning for Visual Recognition, T-PAMI, 2019.
  2. Very Deep Convolutional Networks for Large-scale Image Recognition, arXiv, 2014.
  3. Feature Pyramid Networks for Object Detection, CVPR, 2017.

About the leaderboard on the test set, please visit Crowd benchmark. Our submissions are the IIM(HRNet) and IIM (VGG16).

Video Demo

We test the pretrained HR Net model on the NWPU dataset in a real-world subway scene. Please visit bilibili or YouTube to watch the video demonstration. val_curve

Citation

If you find this project is useful for your research, please cite:

@article{gao2020learning,
  title={Learning Independent Instance Maps for Crowd Localization},
  author={Gao, Junyu and Han, Tao and Yuan, Yuan and Wang, Qi},
  journal={arXiv preprint arXiv:2012.04164},
  year={2020}
}

Our code borrows a lot from the C^3 Framework, and you may cite:

@article{gao2019c,
  title={C$^3$ Framework: An Open-source PyTorch Code for Crowd Counting},
  author={Gao, Junyu and Lin, Wei and Zhao, Bin and Wang, Dong and Gao, Chenyu and Wen, Jun},
  journal={arXiv preprint arXiv:1907.02724},
  year={2019}
}

If you use pre-trained models in this repo (HR Net, VGG, and FPN), please cite them.

Owner
tao han
tao han
Membership Inference Attack against Graph Neural Networks

MIA GNN Project Starter If you meet the version mismatch error for Lasagne library, please use following command to upgrade Lasagne library. pip insta

6 Nov 09, 2022
This code provides various models combining dilated convolutions with residual networks

Overview This code provides various models combining dilated convolutions with residual networks. Our models can achieve better performance with less

Fisher Yu 1.1k Dec 30, 2022
This is a template for the Non-autoregressive Deep Learning-Based TTS model (in PyTorch).

Non-autoregressive Deep Learning-Based TTS Template This is a template for the Non-autoregressive TTS model. It contains Data Preprocessing Pipeline D

Keon Lee 13 Dec 05, 2022
This repository implements WGAN_GP.

Image_WGAN_GP This repository implements WGAN_GP. Image_WGAN_GP This repository uses wgan to generate mnist and fashionmnist pictures. Firstly, you ca

Lieon 6 Dec 10, 2021
A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks

A Pytorch Implementation of Domain adaptation of object detector using scissor-like networks Please follow Faster R-CNN and DAF to complete the enviro

2 Oct 07, 2022
✨✨✨An awesome open source toolbox for stereo matching.

OpenStereo This is an awesome open source toolbox for stereo matching. Supported Methods: BM SGM(T-PAMI'07) GCNet(ICCV'17) PSMNet(CVPR'18) StereoNet(E

Wang Qingyu 6 Nov 04, 2022
Computer Vision Script to recognize first person motion, developed as final project for the course "Machine Learning and Deep Learning"

Overview of The Code BaseColab/MLDL_FPAR.pdf: it contains the full explanation of our work Base Colab: it contains the base colab used to perform all

Simone Papicchio 4 Jul 16, 2022
PyTorch Implementation of DSB for Score Based Generative Modeling. Experiments managed using Hydra.

Diffusion Schrödinger Bridge with Applications to Score-Based Generative Modeling This repository contains the implementation for the paper Diffusion

James Thornton 50 Jan 03, 2023
Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis

Pyramid Transformer Net (PTNet) Project | Paper Pytorch implementation of PTNet for high-resolution and longitudinal infant MRI synthesis. PTNet: A Hi

Xuzhe Johnny Zhang 6 Jun 08, 2022
SeqTR: A Simple yet Universal Network for Visual Grounding

SeqTR This is the official implementation of SeqTR: A Simple yet Universal Network for Visual Grounding, which simplifies and unifies the modelling fo

seanZhuh 76 Dec 24, 2022
PyTorch DepthNet Training on Still Box dataset

DepthNet training on Still Box Project page This code can replicate the results of our paper that was published in UAVg-17. If you use this repo in yo

Clément Pinard 115 Nov 21, 2022
Detectorch - detectron for PyTorch

Detectorch - detectron for PyTorch (Disclaimer: this is work in progress and does not feature all the functionalities of detectron. Currently only inf

Ignacio Rocco 558 Dec 23, 2022
Code for the paper "M2m: Imbalanced Classification via Major-to-minor Translation" (CVPR 2020)

M2m: Imbalanced Classification via Major-to-minor Translation This repository contains code for the paper "M2m: Imbalanced Classification via Major-to

79 Oct 13, 2022
The official repository for Deep Image Matting with Flexible Guidance Input

FGI-Matting The official repository for Deep Image Matting with Flexible Guidance Input. Paper: https://arxiv.org/abs/2110.10898 Requirements easydict

Hang Cheng 51 Nov 10, 2022
Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters"

Official Code Release for "CLIP-Adapter: Better Vision-Language Models with Feature Adapters" Pipeline of CLIP-Adapter CLIP-Adapter is a drop-in modul

peng gao 157 Dec 26, 2022
This repository contains the code for designing risk bounded motion plans for car-like robot using Carla Simulator.

Nonlinear Risk Bounded Robot Motion Planning This code simulates the bicycle dynamics of car by steering it on the road by avoiding another static car

8 Sep 03, 2022
Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network

DeepCDR Cancer Drug Response Prediction via a Hybrid Graph Convolutional Network This work has been accepted to ECCB2020 and was also published in the

Qiao Liu 50 Dec 18, 2022
Official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks"

Easy-To-Hard The official repository for the paper "Can You Learn an Algorithm? Generalizing from Easy to Hard Problems with Recurrent Networks". Gett

Avi Schwarzschild 52 Sep 08, 2022
PyGCL: Graph Contrastive Learning Library for PyTorch

PyGCL: Graph Contrastive Learning for PyTorch PyGCL is an open-source library for graph contrastive learning (GCL), which features modularized GCL com

GCL: Graph Contrastive Learning Library for PyTorch 594 Jan 08, 2023
Paddle pit - Rethinking Spatial Dimensions of Vision Transformers

基于Paddle实现PiT ——Rethinking Spatial Dimensions of Vision Transformers,arxiv 官方原版代

Hongtao Wen 4 Jan 15, 2022