MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens

Overview

MSG-Transformer

Official implementation of the paper MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens,
by Jiemin Fang, Lingxi Xie, Xinggang Wang, Xiaopeng Zhang, Wenyu Liu, Qi Tian.

We propose a novel Transformer architecture, named MSG-Transformer, which enables efficient and flexible information exchange by introducing MSG tokens to sever as the information hub.


Transformers have offered a new methodology of designing neural networks for visual recognition. Compared to convolutional networks, Transformers enjoy the ability of referring to global features at each stage, yet the attention module brings higher computational overhead that obstructs the application of Transformers to process high-resolution visual data. This paper aims to alleviate the conflict between efficiency and flexibility, for which we propose a specialized token for each region that serves as a messenger (MSG). Hence, by manipulating these MSG tokens, one can flexibly exchange visual information across regions and the computational complexity is reduced. We then integrate the MSG token into a multi-scale architecture named MSG-Transformer. In standard image classification and object detection, MSG-Transformer achieves competitive performance and the inference on both GPU and CPU is accelerated. block arch

Updates

  • 2021.6.2 Code for ImageNet classification is released. Pre-trained models will be available soon.

Requirements

  • PyTorch==1.7
  • timm==0.3.2
  • Apex
  • opencv-python>=3.4.1.15
  • yacs==0.1.8

Data Preparation

Please organize your ImageNet dataset as followins.

path/to/ImageNet
|-train
| |-cls1
| | |-img1
| | |-...
| |-cls2
| | |-img2
| | |-...
| |-...
|-val
  |-cls1
  | |-img1
  | |-...
  |-cls2
  | |-img2
  | |-...
  |-...

Training

Train MSG-Transformers on ImageNet-1k with the following script.
For MSG-Transformer-T, run

python -m torch.distributed.launch --nproc_per_node 8 main.py \
    --cfg configs/msg_tiny_p4_win7_224.yaml --data-path <dataset-path> --batch-size 128

For MSG-Transformer-S, run

python -m torch.distributed.launch --nproc_per_node 8 main.py \
    --cfg configs/msg_small_p4_win7_224.yaml --data-path <dataset-path> --batch-size 128

For MSG-Transformer-B, we recommend running the following script on two nodes, where each node is with 8 GPUs.

python -m torch.distributed.launch --nproc_per_node 8 \
    --nnodes=2 --node_rank=<node-rank> --master_addr=<ip-address> --master_port=<port> \
    main.py --cfg configs/msg_base_p4_win7_224.yaml --data-path <dataset-path> --batch-size 64

Evaluation

Run the following script to evaluate the pre-trained model.

python -m torch.distributed.launch --nproc_per_node <GPU-number> main.py \
    --cfg <model-config> --data-path <dataset-path> --batch-size <batch-size> \
    --resume <checkpoint> --eval

Main Results

ImageNet-1K

Model Input size Params FLOPs GPU throughput (images/s) CPU Latency Top-1 ACC (%)
MSG-Trans-T 224 28M 4.6G 696.7 150ms 80.9
MSG-Trans-S 224 50M 8.9G 401.0 262ms 83.0
MSG-Trans-B 224 88M 15.8G 262.6 437ms 83.5

MS-COCO

Method box mAP mask mAP Params FLOPs FPS
MSG-Trans-T 50.3 43.6 86M 748G 9.4
MSG-Trans-S 51.8 44.8 107M 842G 7.5
MSG-Trans-B 51.9 45.0 145M 990G 6.2

Acknowledgements

This repository is based on Swin-Transformer and timm. Thanks for their contributions to the community.

Citation

If you find this repository/work helpful in your research, welcome to cite the paper.

@article{fang2021msgtransformer,
  title={MSG-Transformer: Exchanging Local Spatial Information by Manipulating Messenger Tokens},
  author={Jiemin Fang and Lingxi Xie and Xinggang Wang and Xiaopeng Zhang and Wenyu Liu and Qi Tian},
  journal={arXiv:2105.15168},
  year={2021}
}
Owner
Hust Visual Learning Team
Hust Visual Learning Team belongs to the Artificial Intelligence Research Institute in the School of EIC in HUST
Hust Visual Learning Team
(IEEE TIP 2021) Regularized Densely-connected Pyramid Network for Salient Instance Segmentation

RDPNet IEEE TIP 2021: Regularized Densely-connected Pyramid Network for Salient Instance Segmentation PyTorch training and testing code are available.

Yu-Huan Wu 41 Oct 21, 2022
Christmas face app for Decathlon xmas coding party!

Christmas Face Application Use this library to create the perfect picture for your christmas cards! Done by Hasib Zunair, Guillaume Brassard and Samue

Hasib Zunair 4 Dec 20, 2021
DECAF: Generating Fair Synthetic Data Using Causally-Aware Generative Networks

DECAF (DEbiasing CAusal Fairness) Code Author: Trent Kyono This repository contains the code used for the "DECAF: Generating Fair Synthetic Data Using

van_der_Schaar \LAB 7 Nov 24, 2022
Code for EMNLP 2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training"

SCAPT-ABSA Code for EMNLP2021 paper: "Learning Implicit Sentiment in Aspect-based Sentiment Analysis with Supervised Contrastive Pre-Training" Overvie

Zhengyan Li 66 Dec 04, 2022
structured-generative-modeling

This repository contains the implementation for the paper Information Theoretic StructuredGenerative Modeling, Specially thanks for the open-source co

0 Oct 11, 2021
Semantically Contrastive Learning for Low-light Image Enhancement

Semantically Contrastive Learning for Low-light Image Enhancement Here, we propose an effective semantically contrastive learning paradigm for Low-lig

48 Dec 16, 2022
ArcaneGAN by Alex Spirin

ArcaneGAN by Alex Spirin

Alex 617 Dec 28, 2022
The source code of the paper "SHGNN: Structure-Aware Heterogeneous Graph Neural Network"

SHGNN: Structure-Aware Heterogeneous Graph Neural Network The source code and dataset of the paper: SHGNN: Structure-Aware Heterogeneous Graph Neural

Wentao Xu 7 Nov 13, 2022
A simple log parser and summariser for IIS web server logs

IISLogFileParser A basic parser tool for IIS Logs which summarises findings from the log file. Inspired by the Gist https://gist.github.com/wh13371/e7

2 Mar 26, 2022
scAR (single-cell Ambient Remover) is a package for data denoising in single-cell omics.

scAR scAR (single cell Ambient Remover) is a package for denoising multiple single cell omics data. It can be used for multiple tasks, such as, sgRNA

19 Nov 28, 2022
Yolov5 + Deep Sort with PyTorch

딥소트 수정중 Yolov5 + Deep Sort with PyTorch Introduction This repository contains a two-stage-tracker. The detections generated by YOLOv5, a family of obj

1 Nov 26, 2021
Low-dose Digital Mammography with Deep Learning

Impact of loss functions on the performance of a deep neural network designed to restore low-dose digital mammography ====== This repository contains

WANG-AXIS 6 Dec 13, 2022
This is the code of using DQN to play Sekiro .

Update for using DQN to play sekiro 2021.2.2(English Version) This is the code of using DQN to play Sekiro . I am very glad to tell that I have writen

144 Dec 25, 2022
A computational block to solve entity alignment over textual attributes in a knowledge graph creation pipeline.

How to apply? Create your config.ini file following the example provided in config.ini Choose one of the options below to run: Run with Python3 pip in

Scientific Data Management Group 3 Jun 23, 2022
Capsule endoscopy detection DACON challenge

capsule_endoscopy_detection (DACON Challenge) Overview Yolov5, Yolor, mmdetection기반의 모델을 사용 (총 11개 모델 앙상블) 모든 모델은 학습 시 Pretrained Weight을 yolov5, yolo

MAILAB 11 Nov 25, 2022
OpenFace – a state-of-the art tool intended for facial landmark detection, head pose estimation, facial action unit recognition, and eye-gaze estimation.

OpenFace 2.2.0: a facial behavior analysis toolkit Over the past few years, there has been an increased interest in automatic facial behavior analysis

Tadas Baltrusaitis 5.8k Dec 31, 2022
Multi-Output Gaussian Process Toolkit

Multi-Output Gaussian Process Toolkit Paper - API Documentation - Tutorials & Examples The Multi-Output Gaussian Process Toolkit is a Python toolkit f

GAMES 113 Nov 25, 2022
Post-training Quantization for Neural Networks with Provable Guarantees

Post-training Quantization for Neural Networks with Provable Guarantees Authors: Jinjie Zhang ( Yixuan Zhou 2 Nov 29, 2022

Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback

CoSMo.pytorch Official Implementation of CoSMo: Content-Style Modulation for Image Retrieval with Text Feedback, Seungmin Lee*, Dongwan Kim*, Bohyung

Seung Min Lee 54 Dec 08, 2022
Pytorch implementation of Cut-Thumbnail in the paper Cut-Thumbnail:A Novel Data Augmentation for Convolutional Neural Network.

Cut-Thumbnail (Accepted at ACM MULTIMEDIA 2021) Tianshu Xie, Xuan Cheng, Xiaomin Wang, Minghui Liu, Jiali Deng, Tao Zhou, Ming Liu This is the officia

3 Apr 12, 2022