Localization Distillation for Object Detection

Overview

Localization Distillation for Object Detection

This repo is based on mmDetection.

This is the code for our paper:

LD is the extension of knowledge distillation on localization task, which utilizes the learned bbox distributions to transfer the localization dark knowledge from teacher to student.

LD stably improves over GFocalV1 about ~0.8 AP and ~1 AR100 without adding any computational cost!

Introduction

Knowledge distillation (KD) has witnessed its powerful ability in learning compact models in deep learning field, but it is still limited in distilling localization information for object detection. Existing KD methods for object detection mainly focus on mimicking deep features between teacher model and student model, which not only is restricted by specific model architectures, but also cannot distill localization ambiguity. In this paper, we first propose localization distillation (LD) for object detection. In particular, our LD can be formulated as standard KD by adopting the general localization representation of bounding box. Our LD is very flexible, and is applicable to distill localization ambiguity for arbitrary architecture of teacher model and student model. Moreover, it is interesting to find that Self-LD, i.e., distilling teacher model itself, can further boost state-of-the-art performance. Second, we suggest a teacher assistant (TA) strategy to fill the possible gap between teacher model and student model, by which the distillation effectiveness can be guaranteed even the selected teacher model is not optimal. On benchmark datasets PASCAL VOC and MS COCO, our LD can consistently improve the performance for student detectors, and also boosts state-of-the-art detectors notably.

Installation

Please refer to INSTALL.md for installation and dataset preparation.

Get Started

Please see GETTING_STARTED.md for the basic usage of MMDetection.

Train

# assume that you are under the root directory of this project,
# and you have activated your virtual environment if needed.
# and with COCO dataset in 'data/coco/'

./tools/dist_train.sh configs/ld/ld_gflv1_r101_r50_fpn_coco_1x.py 8

Learning rate setting

lr=(samples_per_gpu * num_gpu) / 16 * 0.01

For 2 GPUs and mini-batch size 6, the relevant portion of the config file would be:

optimizer = dict(type='SGD', lr=0.00375, momentum=0.9, weight_decay=0.0001)
data = dict(
    samples_per_gpu=3,

For 8 GPUs and mini-batch size 16, the relevant portion of the config file would be:

optimizer = dict(type='SGD', lr=0.01, momentum=0.9, weight_decay=0.0001)
data = dict(
    samples_per_gpu=2,

Convert model

After training with LD, the weight file .pth will be large. You'd better convert the model to save a new small one. See convert_model.py#L38-L40, you can set them to your .pth file and config file. Then, run

python convert_model.py

Speed Test (FPS)

CUDA_VISIBLE_DEVICES=0 python3 ./tools/benchmark.py configs/ld/ld_gflv1_r101_r50_fpn_coco_1x.py work_dirs/ld_gflv1_r101_r50_fpn_coco_1x/epoch_24.pth

COCO Evaluation

./tools/dist_test.sh configs/ld/ld_gflv1_r101_r50_fpn_coco_1x.py work_dirs/ld_gflv1_r101_r50_fpn_coco_1x/epoch_24.pth 8 --eval bbox

GFocalV1 with LD

Teacher Student Training schedule Mini-batch size AP (val) AP50 (val) AP75 (val) AP (test-dev) AP50 (test-dev) AP75 (test-dev) AR100 (test-dev)
-- R-18 1x 6 35.8 53.1 38.2 36.0 53.4 38.7 55.3
R-101 R-18 1x 6 36.5 52.9 39.3 36.8 53.5 39.9 56.6
-- R-34 1x 6 38.9 56.6 42.2 39.2 56.9 42.3 58.0
R-101 R-34 1x 6 39.8 56.6 43.1 40.0 57.1 43.5 59.3
-- R-50 1x 6 40.1 58.2 43.1 40.5 58.8 43.9 59.0
R-101 R-50 1x 6 41.1 58.7 44.9 41.2 58.8 44.7 59.8
-- R-101 2x 6 44.6 62.9 48.4 45.0 63.6 48.9 62.3
R-101-DCN R-101 2x 6 45.4 63.1 49.5 45.6 63.7 49.8 63.3

GFocalV1 with Self-LD

Teacher Student Training schedule Mini-batch size AP (val) AP50 (val) AP75 (val)
-- R-18 1x 6 35.8 53.1 38.2
R-18 R-18 1x 6 36.1 52.9 38.5
-- R-50 1x 6 40.1 58.2 43.1
R-50 R-50 1x 6 40.6 58.2 43.8
-- X-101-32x4d-DCN 1x 4 46.9 65.4 51.1
X-101-32x4d-DCN X-101-32x4d-DCN 1x 4 47.5 65.8 51.8

GFocalV2 with LD

Teacher Student Training schedule Mini-batch size AP (test-dev) AP50 (test-dev) AP75 (test-dev) AR100 (test-dev)
-- R-50 2x 16 44.4 62.3 48.5 62.4
R-101 R-50 2x 16 44.8 62.4 49.0 63.1
-- R-101 2x 16 46.0 64.1 50.2 63.5
R-101-DCN R-101 2x 16 46.8 64.5 51.1 64.3
-- R-101-DCN 2x 16 48.2 66.6 52.6 64.4
R2-101-DCN R-101-DCN 2x 16 49.1 67.1 53.7 65.6
-- X-101-32x4d-DCN 2x 16 49.0 67.6 53.4 64.7
R2-101-DCN X-101-32x4d-DCN 2x 16 50.2 68.3 54.9 66.3
-- R2-101-DCN 2x 16 50.5 68.9 55.1 66.2
R2-101-DCN R2-101-DCN 2x 16 51.0 69.1 55.9 66.8

VOC Evaluation

./tools/dist_test.sh configs/ld/ld_gflv1_r101_r18_fpn_voc.py work_dirs/ld_gflv1_r101_r18_fpn_voc/epoch_4.pth 8 --eval mAP

GFocalV1 with LD

Teacher Student Training Epochs Mini-batch size AP AP50 AP75
-- R-18 4 6 51.8 75.8 56.3
R-101 R-18 4 6 53.0 75.9 57.6
-- R-50 4 6 55.8 79.0 60.7
R-101 R-50 4 6 56.1 78.5 61.2
-- R-34 4 6 55.7 78.9 60.6
R-101-DCN R-34 4 6 56.7 78.4 62.1
-- R-101 4 6 57.6 80.4 62.7
R-101-DCN R-101 4 6 58.4 80.2 63.7

This is an example of evaluation results (R-101→R-18).

+-------------+------+-------+--------+-------+
| class       | gts  | dets  | recall | ap    |
+-------------+------+-------+--------+-------+
| aeroplane   | 285  | 4154  | 0.081  | 0.030 |
| bicycle     | 337  | 7124  | 0.125  | 0.108 |
| bird        | 459  | 5326  | 0.096  | 0.018 |
| boat        | 263  | 8307  | 0.065  | 0.034 |
| bottle      | 469  | 10203 | 0.051  | 0.045 |
| bus         | 213  | 4098  | 0.315  | 0.247 |
| car         | 1201 | 16563 | 0.193  | 0.131 |
| cat         | 358  | 4878  | 0.254  | 0.128 |
| chair       | 756  | 32655 | 0.053  | 0.027 |
| cow         | 244  | 4576  | 0.131  | 0.109 |
| diningtable | 206  | 13542 | 0.150  | 0.117 |
| dog         | 489  | 6446  | 0.196  | 0.076 |
| horse       | 348  | 5855  | 0.144  | 0.036 |
| motorbike   | 325  | 6733  | 0.052  | 0.017 |
| person      | 4528 | 51959 | 0.099  | 0.037 |
| pottedplant | 480  | 12979 | 0.031  | 0.009 |
| sheep       | 242  | 4706  | 0.132  | 0.060 |
| sofa        | 239  | 9640  | 0.192  | 0.060 |
| train       | 282  | 4986  | 0.142  | 0.042 |
| tvmonitor   | 308  | 7922  | 0.078  | 0.045 |
+-------------+------+-------+--------+-------+
| mAP         |      |       |        | 0.069 |
+-------------+------+-------+--------+-------+
AP:  0.530091167986393
['AP50: 0.759393', 'AP55: 0.744544', 'AP60: 0.724239', 'AP65: 0.693551', 'AP70: 0.639848', 'AP75: 0.576284', 'AP80: 0.489098', 'AP85: 0.378586', 'AP90: 0.226534', 'AP95: 0.068834']
{'mAP': 0.7593928575515747}

Note:

  • For more experimental details, please refer to GFocalV1, GFocalV2 and mmdetection.
  • According to ATSS, there is no gap between box-based regression and point-based regression. Personal conjectures: 1) If xywh form is able to work when using general distribution (apply uniform subinterval division for xywh), our LD can also work in xywh form. 2) If xywh form with general distribution cannot obtain better result, then the best modification is to firstly switch xywh form to tblr form and then apply general distribution and LD. Consequently, whether xywh form + general distribution works or not, our LD benefits for all the regression-based detector.

Pretrained weights

VOC COCO
GFocalV1 teacher R101 pan.baidu pw: ufc8 GFocalV1 + LD R101_R18_1x pan.baidu pw: hj8d
GFocalV1 teacher R101DCN pan.baidu pw: 5qra GFocalV1 + LD R101_R50_1x pan.baidu pw: bvzz
GFocalV1 + LD R101_R18 pan.baidu pw: 1bd3 GFocalV2 + LD R101_R50_2x pan.baidu pw: 3jtq
GFocalV1 + LD R101DCN_R34 pan.baidu pw: thuw GFocalV2 + LD R101DCN_R101_2x pan.baidu pw: zezq
GFocalV1 + LD R101DCN_R101 pan.baidu pw: mp8t GFocalV2 + LD R2N_R101DCN_2x pan.baidu pw: fsbm
GFocalV2 + LD R2N_X101_2x pan.baidu pw: 9vcc
GFocalV2 + Self-LD R2N_R2N_2x pan.baidu pw: 9azn

For any other teacher model, you can download at GFocalV1, GFocalV2 and mmdetection.

Score voting Cluster-DIoU-NMS

We provide Score voting Cluster-DIoU-NMS which is a speed up version of score voting NMS and combination with DIoU-NMS. For GFocalV1 and GFocalV2, Score voting Cluster-DIoU-NMS will bring 0.1-0.3 AP increase, 0.2-0.5 AP75 increase, <=0.4 AP50 decrease and <=1.5 FPS decrease, while it is much faster than score voting NMS in mmdetection. The relevant portion of the config file would be:

# Score voting Cluster-DIoU-NMS
test_cfg = dict(
nms=dict(type='voting_cluster_diounms', iou_threshold=0.6),

# Original NMS
test_cfg = dict(
nms=dict(type='nms', iou_threshold=0.6),

Citation

If you find LD useful in your research, please consider citing:

@Article{zheng2021LD,
  title={Localization Distillation for Object Detection},
  author= {Zhaohui Zheng, Rongguang Ye, Ping Wang, Jun Wang, Dongwei Ren, Wangmeng Zuo},
  journal={arXiv:2102.12252},
  year={2021}
}
Owner
Master student
Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On

Self-Supervised Collision Handling via Generative 3D Garment Models for Virtual Try-On [Project website] [Dataset] [Video] Abstract We propose a new g

71 Dec 24, 2022
A modified version of DeepMind's Alphafold2 to divide CPU part (MSA and template searching) and GPU part (prediction model)

ParallelFold Author: Bozitao Zhong This is a modified version of DeepMind's Alphafold2 to divide CPU part (MSA and template searching) and GPU part (p

Bozitao Zhong 77 Dec 22, 2022
Open source annotation tool for machine learning practitioners.

doccano doccano is an open source text annotation tool for humans. It provides annotation features for text classification, sequence labeling and sequ

7.1k Jan 01, 2023
(ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning"

CLNet (ICCV 2021) PyTorch implementation of Paper "Progressive Correspondence Pruning by Consensus Learning" [project page] [paper] Citing CLNet If yo

Chen Zhao 22 Aug 26, 2022
Experimental Python implementation of OpenVINO Inference Engine (very slow, limited functionality). All codes are written in Python. Easy to read and modify.

PyOpenVINO - An Experimental Python Implementation of OpenVINO Inference Engine (minimum-set) Description The PyOpenVINO is a spin-off product from my

Yasunori Shimura 7 Oct 31, 2022
Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations.

S2VC Here is the implementation of our paper S2VC: A Framework for Any-to-Any Voice Conversion with Self-Supervised Pretrained Representations. In thi

81 Dec 15, 2022
Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020

Official respository for "Modeling Defocus-Disparity in Dual-Pixel Sensors", ICCP 2020 BibTeX @INPROCEEDINGS{punnappurath2020modeling, author={Abhi

Abhijith Punnappurath 22 Oct 01, 2022
[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

[CVPR 2021] Modular Interactive Video Object Segmentation: Interaction-to-Mask, Propagation and Difference-Aware Fusion

Rex Cheng 364 Jan 03, 2023
Code I use to automatically update my videos' metadata on YouTube

mCodingYouTube This repository contains the code I use to automatically update my videos' metadata on YouTube, including: titles, descriptions, tags,

James Murphy 19 Oct 07, 2022
Scrutinizing XAI with linear ground-truth data

This repository contains all the experiments presented in the corresponding paper: "Scrutinizing XAI using linear ground-truth data with suppressor va

braindata lab 2 Oct 04, 2022
Semantic Segmentation in Pytorch. Network include: FCN、FCN_ResNet、SegNet、UNet、BiSeNet、BiSeNetV2、PSPNet、DeepLabv3_plus、 HRNet、DDRNet

🚀 If it helps you, click a star! ⭐ Update log 2020.12.10 Project structure adjustment, the previous code has been deleted, the adjustment will be re-

Deeachain 269 Jan 04, 2023
Explainable Medical ImageSegmentation via GenerativeAdversarial Networks andLayer-wise Relevance Propagation

MedAI: Transparency in Medical Image Segmentation What is this repo This repo contains the code and experiments that are implemented to contribute in

Awadelrahman M. A. Ahmed 1 Nov 22, 2021
RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching

RAFT-Stereo: Multilevel Recurrent Field Transforms for Stereo Matching This repository contains the source code for our paper: RAFT-Stereo: Multilevel

Princeton Vision & Learning Lab 328 Jan 09, 2023
Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation

Generalizing Gaze Estimation with Outlier-guided Collaborative Adaptation Our paper is accepted by ICCV2021. Picture: Overview of the proposed Plug-an

Yunfei Liu 32 Dec 10, 2022
[NeurIPS 2020] Blind Video Temporal Consistency via Deep Video Prior

pytorch-deep-video-prior (DVP) Official PyTorch implementation for NeurIPS 2020 paper: Blind Video Temporal Consistency via Deep Video Prior TensorFlo

Yazhou XING 90 Oct 19, 2022
CT-Net: Channel Tensorization Network for Video Classification

[ICLR2021] CT-Net: Channel Tensorization Network for Video Classification @inproceedings{ li2021ctnet, title={{\{}CT{\}}-Net: Channel Tensorization Ne

33 Nov 15, 2022
Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets.

Neurons Dataset API - The official dataloader and visualization tools for Neurons Datasets. Introduction We propose our dataloader API for loading and

1 Nov 19, 2021
Python implementation of O-OFDMNet, a deep learning-based optical OFDM system,

O-OFDMNet This includes Python implementation of O-OFDMNet, a deep learning-based optical OFDM system, which uses neural networks for signal processin

Thien Luong 4 Sep 09, 2022
An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax

Simple Transformer An implementation of the "Attention is all you need" paper without extra bells and whistles, or difficult syntax. Note: The only ex

29 Jun 16, 2022
Supporting code for the paper "Dangers of Bayesian Model Averaging under Covariate Shift"

Dangers of Bayesian Model Averaging under Covariate Shift This repository contains the code to reproduce the experiments in the paper Dangers of Bayes

Pavel Izmailov 25 Sep 21, 2022