Raindrop strategy for Irregular time series

Related tags

Deep LearningRaindrop
Overview

Graph-Guided Network For Irregularly Sampled Multivariate Time Series

Overview

This repository contains processed datasets and implementation code for manuscript Graph-Guided Network For Irregularly Sampled Multivariate Time Series. We propose, Raindrop, a graph-guided network, to learn representations of irregularly sampled multivariate time series. We use Raindrop to classify time series of three healthcare and human activity datasets in four different settings.

Key idea of Raindrop

The proposed Raindrop models dependencies between sensors using neural message passing and temporal self attention. Raindrop represents every sample (e.g., patient) as a graph, where nodes indicate sensors and edges represent dependencies between them. Raindrop takes samples as input, each sample containing multiple sensors and each sensor consisting of irregularly recorded observations (e.g., in clinical data, an individual patient’s state of health, recorded at irregular time intervals with different subsets of sensors observed at different times). Raindrop model is inspired by the idea of raindrops falling into a pool at sequential but nonuniform time intervals and thereby creating ripple effects that propagate across the pool (as shown in the following figure).

The main idea of Raindrop is to generate observation embeddings (a) and sensor embeddings (b). Calculated sensor embeddings then serve as the basis for sample embeddings that can fed into a downstream task such as classification.

Raindrop observations

(a) Raindrop generates observation embedding based on observed value, passes message to neighbor sensors, and generates observation embedding through inter-sensor dependencies. (b) An illustration of generating sensor embedding. We apply the message passing in (a) to all timestamps and produce corresponding observation embeddings. We aggregate arbitrary number of observation embeddings into a fixed-length sensor embedding, while paying distinctive attentions to different observations. We independently apply the sensor-level processing procedure to all sensors.

Experimental settings

We evaluate our model in comparison with the baselines in four different settings:

Setting 1: Classic time series classification. We randomly split the dataset into training (80%), validation (10%), and test (10%) set. The indices of these splits are fixed across all methods.

Setting 2: Leave-fixed-sensors-out. In this setting, we select a proportion of sensors, and set all their observations as zero in validation and test set (training samples are not changed). We mask out the most informative sensors and the selected sensors are fixed across samples and models. The missed sensors are the same across all samples. This setting is practically meaningful, such as facing sensor failure, or some sensors are unavailablein specific scenes. Our intuition is that Raindrop can compensate for the missing information from nearby observations by exploiting relational dependencies.

Setting 3: Leave-random-sensors-out. Setting 3 is similar to Setting 2 except that the missing sensors in this setting are randomly selected instead of fixed. In each test sample, we randomly select a subset of sensors and regard them as missing through replacing all of their observations with zeros. The selected sensors are different across samples.

Setting 4: Group-wise time series classification. In this setting we split the data into two groups, based on a specific static attribute. The first split attribute is age, where we classify people into young (< 65 years) and old (>= 65 years) groups. We also split patients into male and female by gender attribute. Given the split attribute, we use one group as a train set and randomly split the other group into equally sized validation and test set.

Datasets

We prepared to run our code for Raindrop as well as the baseline methods with two healthcare and one human activity dataset.

Raw data

(1) P19 (PhysioNet Sepsis Early Prediction Challenge 2019) includes 38,803 patients that are monitored by 34 sensors. The original dataset has 40,336 patients, we remove the samples with too short or too long time series, remaining 38,803 patients (the longest time series of the patienthas more than one and less than 60 observations). Each patient is associated with a static vector indicating attributes: age, gender, time between hospital admission and ICU admission, ICU type, and ICU length of stay (days). Each patient has a binary label representing occurrence of sepsis within the next 6 hours. The dataset is highly imbalanced with only∼4% positive samples. Raw data of P19 can be found at https://physionet.org/content/challenge-2019/1.0.0/

(2) P12 (PhysioNet Mortality Prediction Challenge 2012) includes 11,988 patients (samples), after removing 12 inappropriate samples as they do not contain any time series information. The 12 patients' id are: 140501, 150649, 140936, 143656, 141264, 145611, 142998, 147514, 142731,150309, 155655, and 156254. Each patient contains multivariate time series with 36 sensors (excluding weight), which are collected in the first 48-hour stay in ICU. Each sample has a static vector with 9 elements including age, gender, etc. Each patient is associated with a binary label indicating length of stay in ICU, where negative label means hospitalization is not longer than 3 days and positive label marks hospitalization is longer than 3 days. P12 is imbalanced with∼93% positive samples. Raw data of P12 can be found at https://physionet.org/content/challenge-2012/1.0.0/

(3) PAM (PAMAP2 Physical Activity Monitoring) measures daily living activities of 9 subjects with 3 inertial measurement units. We modify it to suit our scenario of irregular time series classification. We excluded the ninth subject due to short length of sensor readouts. We segment the continuous signals into samples with the time window of 600 and the overlapping rate of 50%. PAM originally has 18 activities of daily life. We exclude the ones associated with less than 500 samples, remaining 8 activities. After modification, PAM dataset contains 5,333 segments (samples) of sensory signals. Each sample is measured by 17 sensors and contains 600 continuous observations with the sampling frequency 100 Hz. To make time series irregular, we randomly remove 60% of observations. To keep fair comparison, the removed observations are randomly selected but kept the same for all experimental settings and approaches. PAM is labelled by 8 classes where each class represents an activity of daily living. PAM does not include static attributes and the samples are approximately balanced across all 8 categories. Raw data of PAM can be found at http://archive.ics.uci.edu/ml/datasets/pamap2+physical+activity+monitoring

Processed data

We organize the well-processed and ready-ro-run data in the same way for three datasets. Next we introduce the files, taking P12data folder as an example.

Inside the P12data folder, we have the following structure:

  • process_scripts
    • Inside we have preprocessing scripts and readme with the instructions how to run them.
  • processed_data
    • P_list.npy: Array of dictionaries, which is created from raw data. Array has a length of number of samples and each dictionary has keys 'id', 'static' variables and 'ts' time series data.
    • PTdict_list.npy: Processed array of dictionaries. Array has a length of number of samples and each dictionary includes keys, such as 'id', 'static' attributes, 'arr' time series data and 'time' of observations.
    • arr_outcomes.npy: The content has the shape (number of samples, outcomes). For each sample (patient) there are target outputs, such as length of hospital stay or mortality.
    • ts_params.npy: Array with names of all sensors.
    • static_params.npy: Array with names of static attributes.
    • extended_static_params.npy: Array with names of extended static attributes (with more attributes than in static_params.npy).
    • readme.md: Short description of the files. Readme and preprocessing scripts may be ignored if the dataset is obviously easy to understand.
  • rawdata
    • set-a: Data in the form of 4,000 .txt files, each containing time series observations.
    • set-b: Data in the form of 4,000 .txt files, each containing time series observations.
    • set-c: Data in the form of 4,000 .txt files, each containing time series observations.
    • Outcomes-a: Text file, including target values (e.g., length of hospital stay, mortality) for all 4,000 samples from set-a.
    • Outcomes-b: Text file, including target values (e.g., length of hospital stay, mortality) for all 4,000 samples from set-b.
    • Outcomes-c: Text file, including target values (e.g., length of hospital stay, mortality) for all 4,000 samples from set-c.
  • splits
    • Includes 5 different splits of data indices (train, validation, test) to use them when running an algorithm five times to measure mean and standard deviation of the performance.

Requirements

Raindrop has tested using Python 3.6 and 3.9.

To have consistent libraries and their versions, you can install needed dependencies for this project running the following command:

pip install -r requirements.txt

Running the code

We provide ready-to-run code for our Raindrop model and the following baselines: Transformer, Trans-mean, GRU-D, SeFT and mTAND. See details of these baselines in our paper. Starting from root directory Raindrop, you can run models as follows:

  • Raindrop
cd code
python Raindrop.py
  • Transformer
cd code/baselines
python Transformer_baseline.py
  • Trans-mean
cd code/baselines
python Transformer_baseline.py --imputation mean
  • GRU-D
cd code/baselines
python GRU-D_baseline.py
  • SeFT
cd code/baselines
python SEFT_baseline.py
  • mTAND
cd code/baselines/mTAND
python mTAND_baseline.py

All algorithms can be run with named arguments, which allow the use of different settings from the paper:

  • dataset: Choose which dataset to use. Options: [P12, P19, PAM].
  • withmissingratio: If True, missing ratio of sensors in test set ranges from 0.1 to 0.5. If False, missing ratio is 0. Used in setting 2 and 3. Options: [True, False].
  • splittype: Choose how the data is split into train, validation and test set. Used in setting 4. Options: [random, age, gender].
  • reverse: Choose the order in setting 4. If True, use female/old for training. If False, use male/young for training. Options: [True, False].
  • feature_removal_level: Choose between setting 1 (no_removal), 2 (set) and 3 (sample). Options: [no_removal, set, sample].
  • imputation: Imputation method to choose to fill in missing values. Only used in Transformer. Options: [no_imputation, mean, forward, cubic_spline].

Examples

In all cases beware the directory from which you run these commands (see cd commands above).

Run Raindrop model on P19 dataset in setting 1 (standard time series classification):

python Raindrop.py --dataset P19 --withmissingratio False --splittype random --feature_removal_level no_removal 

Run Transformer baseline on PAM dataset in setting 2 (leave-fixed-sensors-out):

python Transformer_baseline.py --dataset PAM --withmissingratio True --splittype random --feature_removal_level set

Run SeFT baseline on PAM dataset in setting 3 (leave-random-sensors-out):

python SEFT_baseline.py --dataset PAM --withmissingratio True --splittype random --feature_removal_level sample

Run GRU-D baseline on P19 dataset in setting 4, where you train on younger than 65 and test on aged 65 or more.

python GRU-D_baseline.py --dataset P19 --withmissingratio False --splittype age --feature_removal_level no_removal --reverse False

Large size data files

Due to size limitation in GitHub, the following large data files are not uploaded to this repository yet. We will store these large size data into an accessable platform (such as figshare) and share the download link here after the acceptance of our paper.

  • code/baselines/mTAND/P_list.npy
  • code/baselines/saved/dataset.npy
  • code/baselines/saved/inputs.npy
  • code/baselines/saved/P19_dataset.npy
  • code/baselines/saved/P19_inputs.npy
  • code/baselines/saved/PAM_dataset.npy
  • code/baselines/saved/PAM_inputs.npy
  • code/baselines/saved/PAM_sparse_mask.npy
  • P12data/processed_data/P_list.npy
  • P12data/processed_data/PTdict_list.npy
  • P19data/processed_data/PT_dict_list_6.npy
  • PAMdata/processed_data/AR_8p_8c.mat
  • PAMdata/processed_data/PTdict_list.npy

License

Raindrop is licensed under the MIT License.

Owner
Zitnik Lab @ Harvard
Machine Learning for Medicine and Science
Zitnik Lab @ Harvard
PyTorch Implementation of Fully Convolutional Networks. (Training code to reproduce the original result is available.)

pytorch-fcn PyTorch implementation of Fully Convolutional Networks. Requirements pytorch = 0.2.0 torchvision = 0.1.8 fcn = 6.1.5 Pillow scipy tqdm

Kentaro Wada 1.6k Jan 07, 2023
E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

E2EDNA2 - An automated pipeline for simulation of DNA aptamers complexed with small molecules and short peptides

11 Nov 08, 2022
CONditionals for Ordinal Regression and classification in PyTorch

CONDOR pytorch implementation for ordinal regression with deep neural networks. Documentation: https://GarrettJenkinson.github.io/condor_pytorch About

7 Jul 25, 2022
SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning

Datasets | Website | Raw Data | OpenReview SustainBench: Benchmarks for Monitoring the Sustainable Development Goals with Machine Learning Christopher

67 Dec 17, 2022
Deep Surface Reconstruction from Point Clouds with Visibility Information

Data, code and pretrained models for the paper Deep Surface Reconstruction from Point Clouds with Visibility Information.

Raphael Sulzer 23 Jan 04, 2023
GAN-based Matrix Factorization for Recommender Systems

GAN-based Matrix Factorization for Recommender Systems This repository contains the datasets' splits, the source code of the experiments and their res

Ervin Dervishaj 9 Nov 06, 2022
AI Flow is an open source framework that bridges big data and artificial intelligence.

Flink AI Flow Introduction Flink AI Flow is an open source framework that bridges big data and artificial intelligence. It manages the entire machine

144 Dec 30, 2022
Weakly- and Semi-Supervised Panoptic Segmentation (ECCV18)

Weakly- and Semi-Supervised Panoptic Segmentation by Qizhu Li*, Anurag Arnab*, Philip H.S. Torr This repository demonstrates the weakly supervised gro

Qizhu Li 159 Dec 20, 2022
The Hailo Model Zoo includes pre-trained models and a full building and evaluation environment

Hailo Model Zoo The Hailo Model Zoo provides pre-trained models for high-performance deep learning applications. Using the Hailo Model Zoo you can mea

Hailo 50 Dec 07, 2022
This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems.

This repository contain code on Novelty-Driven Binary Particle Swarm Optimisation for Truss Optimisation Problems. The main directory include the code

0 Dec 23, 2021
Neon: an add-on for Lightbulb making it easier to handle component interactions

Neon Neon is an add-on for Lightbulb making it easier to handle component interactions. Installation pip install git+https://github.com/neonjonn/light

Neon Jonn 9 Apr 29, 2022
Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs.

Lunar Lunar is a neural network aimbot that uses real-time object detection accelerated with CUDA on Nvidia GPUs. About Lunar can be modified to work

Zeyad Mansour 276 Jan 07, 2023
A module for solving and visualizing Schrödinger equation.

qmsolve This is an attempt at making a solid, easy to use solver, capable of solving and visualize the Schrödinger equation for multiple particles, an

506 Dec 28, 2022
Object detection and instance segmentation toolkit based on PaddlePaddle.

Object detection and instance segmentation toolkit based on PaddlePaddle.

9.3k Jan 02, 2023
Official repository for "Orthogonal Projection Loss" (ICCV'21)

Orthogonal Projection Loss (ICCV'21) Kanchana Ranasinghe, Muzammal Naseer, Munawar Hayat, Salman Khan, & Fahad Shahbaz Khan Paper Link | Project Page

Kanchana Ranasinghe 83 Dec 26, 2022
Demo for the paper "Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation"

Streaming speaker diarization Overlap-aware low-latency online speaker diarization based on end-to-end local segmentation by Juan Manuel Coria, Hervé

Juanma Coria 187 Jan 06, 2023
Neural Caption Generator with Attention

Neural Caption Generator with Attention Tensorflow implementation of "Show

Taeksoo Kim 510 Nov 30, 2022
AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention

AdaNet is a lightweight TensorFlow-based framework for automatically learning high-quality models with minimal expert intervention. AdaNet buil

3.4k Jan 07, 2023
How to use TensorLayer

How to use TensorLayer While research in Deep Learning continues to improve the world, we use a bunch of tricks to implement algorithms with TensorLay

zhangrui 349 Dec 07, 2022
Create and implement a deep learning library from scratch.

In this project, we create and implement a deep learning library from scratch. Table of Contents Deep Leaning Library Table of Contents About The Proj

Rishabh Bali 22 Aug 23, 2022